1 |
HAYAT S, YANMAZ E, MUZAFFAR R Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Communications Surveys Tutorials, 2016, 18 (4): 2624- 2661.
doi: 10.1109/COMST.2016.2560343
|
2 |
QIANTORI A, SUTIONO A B, HARIYANTO H, et al An emergency medical communications system by low altitude platform at the early stages of a natural disaster in Indonesia. Journal of Medical Systems, 2012, 36 (1): 41- 52.
doi: 10.1007/s10916-010-9444-9
|
3 |
ROGERS J. How drones are helping the Nepal earthquake relief effort. https://www.foxnews.com/tech/how-drones-are-helping-the-nepal-earthquake-relief-effort.
|
4 |
MOZAFFARI M, SAAD W, BENNISN M, et al A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Communications Surveys Tutorials, 2019, 21 (3): 2334- 2360.
doi: 10.1109/COMST.2019.2902862
|
5 |
BUCAILLE I, HETHUIN S, MUNARI A, et al Rapidly deployable network for tactical applications: aerial base station with opportunistic links for unattended and temporary events absolute example. Proc. of the IEEE Military Communications Conference, 2013, 1116- 1120.
|
6 |
BOR-YALINIZ R I, EL-KEY A, YANIKOMEROGLU H. Efficient 3D placement of an aerial base station in next generation cellular networks. Proc. of the IEEE International Conference on Communications, 2016. DOI: 10.1109/ICC.2016.7510820.
|
7 |
LYU J B, ZENG Y, ZHANG R, et al Placement optimization of UAV-mounted mobile base stations. IEEE Communications Letters, 2016, 21 (3): 604- 607.
|
8 |
ALZENAD M, EL-KEYI A, LAGUM F, et al 3D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 2017, 6 (4): 434- 437.
doi: 10.1109/LWC.2017.2700840
|
9 |
MERWADAY A, TUNCER A, KUMBHAR A, et al Improved throughput coverage in natural disasters: unmanned aerial base stations for public-safety communications. IEEE Vehicular Technology Magazine, 2016, 11 (4): 53- 60.
doi: 10.1109/MVT.2016.2589970
|
10 |
JIANG X, WU Z L, YIN Z D, et al Power and trajectory optimization for UAV-enabled amplify-and-forward relay networks. IEEE Access, 2018, 6, 48688- 48696.
doi: 10.1109/ACCESS.2018.2867849
|
11 |
CHEN Y F, ZHAO N, DING Z G, et al Multiple UAVs as relays: multi-hop single link versus multiple dual-hop links. IEEE Trans. on Wireless Communications, 2018, 17 (9): 6348- 6359.
doi: 10.1109/TWC.2018.2859394
|
12 |
PURI A A survey of unmanned aerial vehicles (UAV) for traffic surveillance. Proc. of the International Conference on Unmanned Aircraft Systems, 2013, 221- 234.
|
13 |
FREW E W, BROWN T X Airborne communication networks for small unmanned aircraft systems. Proceedings of the IEEE, 2008, 96 (12): 2008- 2027.
doi: 10.1109/JPROC.2008.2006127
|
14 |
ZENG Y, ZHANG R, LIM T J Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Communications Magazine, 2016, 54 (5): 36- 42.
doi: 10.1109/MCOM.2016.7470933
|
15 |
LI B, FEI Z S, ZHANG Y UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet of Things Journal, 2018, 6 (2): 2241- 2263.
|
16 |
FOTOUHI A, QIANG H R, DING M, et al Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys Tutorials, 2019, 21 (4): 3417- 3442.
doi: 10.1109/COMST.2019.2906228
|
17 |
ZENG Y, ZHANG R Energy-efficient UAV communication with trajectory optimization. IEEE Trans. on Wireless Communications, 2017, 16 (6): 3747- 3760.
doi: 10.1109/TWC.2017.2688328
|
18 |
ZENG Y, XU J, ZHANG R Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. on Wireless Communications, 2019, 18 (4): 2329- 2345.
doi: 10.1109/TWC.2019.2902559
|
19 |
MOZAFFARI M, SAAD W, BENNIS M, et al. Drone small cells in the clouds: design, deployment and performance analysis. Proc. of the IEEE Global Communications Conference, 2015. DOI:10.1109/GLOCOM.2015.7417609.
|
20 |
MOZAFFARI M, SAAD W, BENNIS M, et al Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 2016, 20 (8): 1647- 1650.
doi: 10.1109/LCOMM.2016.2578312
|
21 |
KOULALI S, SABIR E, TALEB T, et al A green strategic activity scheduling for UAV networks: a sub-modular game perspective. IEEE Communications Magazine, 2016, 54 (5): 58- 64.
doi: 10.1109/MCOM.2016.7470936
|
22 |
AHMED S, CHOWDHURY M Z, JANG Y M Energy-efficient UAV-to-user scheduling to maximize throughput in wireless networks. IEEE Access, 2020, 8, 21215- 21225.
doi: 10.1109/ACCESS.2020.2969357
|
23 |
AHMED S, CHOWDHURY M Z, JANG Y M Energy-efficient UAV relaying communications to serve ground nodes. IEEE Communications Letters, 2020, 24 (4): 849- 852.
doi: 10.1109/LCOMM.2020.2965120
|
24 |
KHUWAJA A, CHEN Y F, ZHAO N, et al A survey of channel modeling for UAV communications. IEEE Communications Surveys Tutorials, 2018, 20 (4): 2804- 2821.
doi: 10.1109/COMST.2018.2856587
|
25 |
YOU C S, ZHANG R 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Trans. on Wireless Communications, 2019, 18 (6): 3192- 3207.
doi: 10.1109/TWC.2019.2911939
|
26 |
LIU L, ZHANG S W, ZHANG R CoMP in the sky: UAV placement and movement optimization for multi-user communications. IEEE Trans. on Communications, 2019, 67 (8): 5645- 5658.
doi: 10.1109/TCOMM.2019.2907944
|
27 |
GRANT M, BOYD S. CVX: MATLAB software for disciplined convex programming, 2016. http://cvxr.com/cvx.
|
28 |
BOYD S, BOYD S P, VANDENBERGHE L. Convex optimization. Cambridge: Cambridge University Press, 2004.
|
29 |
PHILLIPS A T. Quadratic fractional programming: Dinkelbach’s method. Boston: Springer, 1998.
|
30 |
CROUZEIX J P, FERLAND J A Algorithms for generalized fractional programming. Mathematical Programming, 1991, 52 (1/3): 191- 207.
|