1 |
XU X, SHI Z W, PAN B L0-based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation . ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141, 46- 58.
doi: 10.1016/j.isprsjprs.2018.04.008
|
2 |
LIU Y, GUO Y, LI F, et al Sparse dictionary learning for blind hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (4): 578- 582.
doi: 10.1109/LGRS.2018.2878036
|
3 |
ZHONG Y F, WANG X Y, XU Y, et al Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications. IEEE Geoscience and Remote Sensing Magazine, 2018, 6 (4): 46- 62.
doi: 10.1109/MGRS.2018.2867592
|
4 |
PAN B, SHI Z W, XU X, et al Coinnet: copy initialization network for multispectral imagery semantic segmentation. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (5): 816- 820.
|
5 |
TU B, LI N Y, FANG L Y, et al Hyperspectral image classification with a class-dependent spatial-spectral mixed metric. Pattern Recognition Letters, 2019, 123, 16- 22.
doi: 10.1016/j.patrec.2019.02.025
|
6 |
MURPHY J M, JAMES M, MAGGION I, et al Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (3): 1829- 1845.
|
7 |
LI A L, QIN A Y, SHANG Z W, et al Spectral-spatial sparse subspace clustering based on three-dimensional edge-preserving filtering for hyperspectral image. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33 (3): 1955003.
|
8 |
ZOU Z X, SHI Z W Hierarchical suppression method for hyperspectral target detection. IEEE Trans. on Geoscience & Remote Sensing, 2015, 54 (1): 330- 342.
|
9 |
ZHU D H, DU B, ZHANG L P Target dictionary construction-based sparse representation hyperspectral target detection methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (4): 1254- 1264.
doi: 10.1109/JSTARS.2019.2902430
|
10 |
XIE W Y, SHI Y Z, LI Y S, et al High-quality spectral-spatial reconstruction using saliency detection and deep feature enhancement. Pattern Recognition, 2019, (88): 139- 152.
|
11 |
JIAO C Z, CHEN C, MCGARVEY R G, et al Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 235- 250.
doi: 10.1016/j.isprsjprs.2018.08.012
|
12 |
WU C, DU B, ZHANG L P Hyperspectral anomalous change detection based on joint sparse representation. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 137- 150.
doi: 10.1016/j.isprsjprs.2018.09.005
|
13 |
LIU S C, BRUZZONE L, BOVOLO F, et al Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images. IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (5): 2733- 48.
|
14 |
NASCIMENTO J M B, DIAS J M B Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. on Geoscience & Remote Sensing, 2005, 43, 898- 910.
|
15 |
MIAO L D, QI H R Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. on Geoscience & Remote Sensing, 2007, 45 (3): 765- 77.
|
16 |
LI J, BIOUCAS-DIAS J M, PLAZA A, et al Robust collabo-rative nonnegative matrix factorization for hyperspectral unmixing (R-CoNMF). IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (10): 6076- 6090.
|
17 |
MIAO L D, QI H R, ZU H A maximum entropy approach to unsupervised mixed-pixel decomposition. IEEE Trans. on Image Processing, 2007, 16 (4): 1008- 1021.
doi: 10.1109/TIP.2006.891350
|
18 |
QI L, LI J, GAO X B, et al A novel joint dictionary framework for sparse hyperspectral unmixing incorporating spectral library. Neurocomputing, 2019, 356, 97- 106.
doi: 10.1016/j.neucom.2019.04.053
|
19 |
DRUMETZ L, MEYER T R, CHANUSSOT J, et al Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms. IEEE Trans. on Image Processing, 2019, 28 (7): 3435- 3450.
doi: 10.1109/TIP.2019.2897254
|
20 |
YAO J, MENG D Y, ZHAO Q, et al Nonconvex-sparsity and nonlocal-smoothness based blind hyperspectral unmixing. IEEE Trans. on Image Processing, 2019, 28 (6): 2991- 3006.
doi: 10.1109/TIP.2019.2893068
|
21 |
ZHANG X R, SUN Y J, ZHANG J Y, et al Hyperspectral unmixing via deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1755- 1759.
doi: 10.1109/LGRS.2018.2857804
|
22 |
SU Y C, LI J, PLAZA A, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (7): 4309- 4321.
|
23 |
SONG X R, WU L D, HAO H X Blind hyperspectral sparse unmixing based on online dictionary learning. Proc. of the International Society for Optics and Photonics-Image and Signal Processing for Remote Sensing XXIV, 2018, 107890K.
|
24 |
SONG X R, WU L D. A novel hyperspectral endmember extraction algorithm based on online robust dictionary learning, Remote Sensing, 2019, 11: 1792.
|
25 |
QU Y, QI H R uDAS: an untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57, 1698- 1712.
|
26 |
PAN Q H, KONG D G, DING C, et al Robust non-negative dictionary learning. Proc. of the 28th AAAI Conference on Artificial Intelligence, 2014, 2027- 2032.
|
27 |
IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2012, 50 (11): 4484- 4502.
|
28 |
BIOUCAS-DIAS J M, NASCIMENTO J M P Hyperspectral subspace identification. IEEE Trans. on Geoscience & Remote Sensing, 2008, 46 (8): 2435- 2445.
|
29 |
SU Y C, LI J, ANTONIO P, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, (7): 1- 13.
|
30 |
WANG Y, PAN C H, XIANG S M, et al Robust hyperspectral unmixing with correntropy-based metric. IEEE Trans. on Image Processing, 2015, 24 (11): 4027- 4040.
doi: 10.1109/TIP.2015.2456508
|