1 |
LING Q, LEMMON M D Optimal dropout compensation in networked control systems. Proc. of the 42nd IEEE International Conference on Decision and Control, 2003, 1, 670- 675.
|
2 |
HADJICOSTIS C N, TOURI R Feedback control utilizing packet dropping network links. Proc. of the 41st IEEE International Conference on Decision and Control, 2002, 2, 1205- 1210.
doi: 10.1109/CDC.2002.1184678
|
3 |
GUPTA V, ADLAKHA S, SINOPOLI B, et al. Towards re-ceding horizon networked control. Proc. of the Allerton Conference on Communication, control and computing, 2016. DOI: 10.1.1.77.5861.
|
4 |
SCHENATO L To zero or to hold control inputs with lossy links. IEEE Trans. on Automatic Control, 2009, 54 (5): 1093- 1099.
doi: 10.1109/TAC.2008.2010999
|
5 |
NAGAHARA M, QUEVEDO D, OSTERGAARD J Packetized predictive control for rate-limited networks via sparse representation. Proc. of the 51st IEEE International Conference on Decision and Control, 2012, 1362- 1367.
|
6 |
NAGAHARA M, QUEVEDO D Sparse representations for packetized predictive networked control. International Federation of Automatic Control, 2011, 84- 89.
|
7 |
NAGAHARA M, QUEVEDO D, OSTERGAARD J. Sparsely-packetized predictive control by orthogonal matching pursuit. Proc. of the 23th International Symposium on Mathematical Theory of Networks and Systems, 2012. arXiv: 1308.0518.
|
8 |
CANDES E, WAKIN M An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2): 21- 30.
doi: 10.1109/MSP.2007.914731
|
9 |
CANDES E, ROMBERG J, TAO T Robust uncertainty principles: exact signal reonstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 2006, 52, 489- 509.
doi: 10.1109/TIT.2005.862083
|
10 |
FORNASIER M, RAUHUT H. Compressive sensing. SCHERZER O, ed. Handbook of Mathmatical Methods in Imaging. Boston: Springer, 2011: 187−228.
|
11 |
LEINONEN M, CODREANU M, JUNTTI M Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks. Proc. Of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, 6449- 6453.
|
12 |
SHAWKY H, ABD-ELNABY M, RIHAN M, et al Efficient compression and reconstruction of speech signals using compressed sensing. International Journal of Speech Technology, 2017, 20, 851- 857.
doi: 10.1007/s10772-017-9423-3
|
13 |
DAS S, SIDHU T S Application of compressive sampling in synchrophasor data communication in WAMS. IEEE Trans. on Industrial Informatics, 2014, 10 (1): 450- 460.
doi: 10.1109/TII.2013.2272088
|
14 |
BAJWA W, HAUPT J, RAZ G, et al Compressed channel sensing. Proc. of the Conference on Information Sciences & Systems, 2008, 19- 21.
|
15 |
DUARTE M, DAVENPORT M, TAKHAR D Compressed channel sensing. Proc. of the Conference on Information Sciences & Systems, 2008, 25, 83- 91.
|
16 |
NAGAHARA M, QUEVEDO D, MATSUDA T, et al Compressive sampling for networked feedback control. Proc. Of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2012, 2733- 2736.
|
17 |
NAGAHARA M, MATSUDA T, HAYASHI K Compressive sampling for remote control systems. IEICE Trans. on Fundamentals, 2012, E95-A (4): 713- 722.
doi: 10.1587/transfun.E95.A.713
|
18 |
NAGAHARA M, QUEVEDO D, OSTERGAARD J, et al Sparse command generator for remote control. Proc. of the 9th IEEE International Conference on Control and Automation, 2011, 1055- 1059.
|
19 |
NAGAHARA M, QUEVEDO D, OSTERGAARD J Sparse packetized predictive control for networked control over erasure channels. IEEE Trans. on Automatic Control, 2014, 59 (7): 1899- 1905.
doi: 10.1109/TAC.2013.2294622
|
20 |
LI Z C, XU Y L, HUANG H, et al Sparse control and compressed sensing in networked switched systems. IET Control Theory and Applications, 2016, 10 (9): 1078- 1087.
doi: 10.1049/iet-cta.2015.1330
|
21 |
TANG H, XU Y L, LI Z C Compressed sensing based realtime control in a smart grid. Proc. of the IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2016, 1782- 1786.
|
22 |
XU Y L, YANG Z Y, ZHANG J R, et al Real-time compressive sensing based control strategy for a multi-area power system. IEEE Trans. on Smart Grid, 2018, 9 (5): 4293- 4302.
doi: 10.1109/TSG.2017.2654253
|
23 |
PEREPU S, TANGIRALA A Classical PID control in presence of missing data using compressed sensing techniques. Proc. of the 11th Global Congress on Process Safety, 2010, 74- 78.
|
24 |
PEREPU S, TANGIRALA A Online estimation of missing data using sparse optimization techniques with applications to classical control. IEEE Trans. on Control Systems Technology, 2019, 27 (2): 495- 506.
doi: 10.1109/TCST.2017.2775191
|
25 |
LEINONEN M, CODREANU M, JUNTTI M Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Trans. on Wireless Communications, 2015, 14 (3): 1622- 1635.
doi: 10.1109/TWC.2014.2371017
|
26 |
LEWICKI M, SEJNOWSKI T Learning overcomplete representations. Neural Computation, 2000, 12 (2): 337- 365.
doi: 10.1162/089976600300015826
|
27 |
ELAD M. Sparse and redundant representation: from theory to applications in signal and image processing. Switzerland: Springer, 2010.
|
28 |
GUO D, LIU Z C, QU X B, et al Sparsity-based online missing data recovery using overcomplete dictionary. IEEE Sensors Journal, 2012, 12 (7): 2485- 249.
doi: 10.1109/JSEN.2011.2178826
|
29 |
WRIGHT S, NOWAK R, FIGUEIREDO M Sparse reconstruction by separable approximation. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, 57 (7): 3373- 3376.
|
30 |
ZHANG Q L, QIU Z Z. Network control system. Beijing: Science Press, 2007. (in Chinese)
|