1 |
WECK DE O L, SCIALOM U, SIDDIQI A Optimal reconfiguration of satellite constellations with the auction algorithm. Acta Astronautica, 2008, 62 (2/3): 112- 130.
|
2 |
SOLEYMANI M, FAKOOR M, BAKHTIARI M Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: a novel technical framework. Advances in Space Research, 2019, 63 (10): 3369- 3384.
doi: 10.1016/j.asr.2019.02.003
|
3 |
FAKOOR M, BAKHTIARI M, SOLEYMANI M Optimal design of the satellite constellation arrangement reconfiguration process. Advances in Space Research, 2016, 58 (3): 372- 386.
doi: 10.1016/j.asr.2016.04.031
|
4 |
CHEN Y G, MAHALEC V, CHEN Y W, et al Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. European Journal of Operational Research, 2014, 242 (1): 10- 20.
|
5 |
DONG L L, YAO H, RANJAN R, et al Fast lightweight reconfiguration of virtual constellation for obtaining of earth observation big data. Cluster Computing, 2017, 20 (5/6): 1- 12.
|
6 |
HITOMI N, SELVA D Incorporating expert knowledge into evolutionary algorithms with operators and constraints to design satellite systems. Applied Soft Computing Journal, 2018, 66, 330- 345.
doi: 10.1016/j.asoc.2018.02.017
|
7 |
SELVA D. Knowledge-intensive global optimization of Earth observing system architectures: a climate-centric case study. Proceeding of the International Society for Optical Engineering, 2014, 9421: 1−23.
|
8 |
OBAYASHI S, SASAKI D Visualization and data mining of pareto solutions using self-organizing map. Evolutionary Multi-Criterion Optimization, 2003, 56 (2632): 796- 809.
|
9 |
GABRIEL K R The biplot-graphical display of matrices with applications to principal components analysis. Biometrika, 1971, 58 (3): 453- 467.
doi: 10.1093/biomet/58.3.453
|
10 |
TENENBAUM J B A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290 (5500): 2319- 2323.
doi: 10.1126/science.290.5500.2319
|
11 |
QUINLAN J R Simplifying decision trees. International Journal of Man-machine Studies, 1987, 27 (3): 221- 234.
doi: 10.1016/S0020-7373(87)80053-6
|
12 |
WANG H L, KWONG S, JIN Y C, et al Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems, 2005, 149 (1): 149- 186.
doi: 10.1016/j.fss.2004.07.013
|
13 |
CERVONE G, FRANZESE P, KEESEE A P K Algorithm quasi-optimal (AQ) learning. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2 (2): 218- 236.
doi: 10.1002/wics.78
|
14 |
BANDARU S, DEB K Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique. Engineering Optimization, 2011, 43 (9): 911- 941.
doi: 10.1080/0305215X.2010.528410
|
15 |
HITOMI N, SELVA D. A hyperheuristic approach to leveraging domain knowledge in multi-objective evolutionary algorithms. Proc. of the ASME Design Engineering Technical Conference, 2016: 1−12.
|
16 |
COSTA L DA, FIALHO A, SCHOENAUER M, et al. Adaptive operator selection with dynamic multi-armed bandits. Proc. of the Genetic and Evolutionary Computation Conference, 2008: 913−920.
|
17 |
LEGGE R S J. Optimization and valuation of recongurable satellite constellations under uncertainty. Massachusetts, America: Massachusetts Institute of Technology, 2014.
|
18 |
HAN C, BAI S Z, ZHANG S H, et al Visibility optimization of satellite constellations using a hybrid method. Acta Astronautica, 2019, 163, 250- 263.
doi: 10.1016/j.actaastro.2019.01.025
|
19 |
EFREMOV R, INSUA D R, LOTOV A. A framework for participatory decision support using Pareto frontier visualization, goal identification and arbitration. European Journal of Operational Research, 2009, 199(2): 459−467.
|
20 |
BANDARU S, ASLAM T, NG A H C, et al Generalized higher-level automated innovization with application to inventory management. European Journal of Operational Research, 2015, 243 (2): 480- 496.
doi: 10.1016/j.ejor.2014.11.015
|
21 |
SELVA D, KREJCI D A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronautica, 2012, 74, 50- 68.
doi: 10.1016/j.actaastro.2011.12.014
|
22 |
PURSHOUSE R C, FLEMING P J, FONSECA C M, et al. A dimensionally-aware genetic programming architecture for automated innovization. Proc. of the International Conference on Evolutionary Multi-Criterion Optimization, 2013: 515−531.
|
23 |
LOBO F G, LIMA C F, MICHALEWICZ Z. Parameter setting in evolutionary algorithms. New York: Springer, 2007.
|
24 |
ZITZLER E, DEB K, THIELE L Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8 (2): 173- 195.
doi: 10.1162/106365600568202
|
25 |
ZITZLER E, KUNZLI S Indicator-based selection in multiobjective search. Lecture Notes in Computer Science, 2004, 3242, 832- 842.
|