Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1421-1438.doi: 10.23919/JSEE.2021.000121
收稿日期:
2020-12-22
出版日期:
2022-01-05
发布日期:
2022-01-05
Jiandong ZHANG1(), Qiming YANG1,*(), Guoqing SHI1(), Yi LU2(), Yong WU1()
Received:
2020-12-22
Online:
2022-01-05
Published:
2022-01-05
Contact:
Qiming YANG
E-mail:jdzhang@nwpu.edu.cn;yangqm@nwpu.edu.cn;shiguoqing@nwpu.edu.cn;yiluemail@126.com;yongwu@nwpu.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1421-1438.
Jiandong ZHANG, Qiming YANG, Guoqing SHI, Yi LU, Yong WU. UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1421-1438.
"
Number | Maneuver | Control value | ||
| | | ||
1 | Forward maintain | 0 | 1 | 0 |
2 | Forward accelerate | 2 | 1 | 0 |
3 | Forward decelerate | ?1 | 0 | 0 |
4 | Left turn maintain | 0 | 8 | ?arc cos (1/8) |
5 | Left turn accelerate | 2 | 8 | ?arc cos (1/8) |
6 | Left turn decelerate | ?1 | 8 | ?arc cos (1/8) |
7 | Right turn maintain | 0 | 8 | arc cos (1/8) |
8 | Right turn accelerate | 2 | 8 | arc cos (1/8) |
9 | Right turn decelerate | ?1 | 8 | arc cos (1/8) |
10 | Upward maintain | 0 | 8 | 0 |
11 | Upward accelerate | 2 | 8 | 0 |
12 | Upward decelerate | ?1 | 8 | 0 |
13 | Downward maintain | 0 | 8 | |
14 | Downward accelerate | 2 | 8 | |
15 | Downward decelerate | ?1 | 8 | |
"
Initial state | x/m | y/m | z/m | v/(m/s) | | | |
Training episode | UAV1 | [?200, 200] | [?300, 300] | 3000 | 200 | 0 | [?60, 60] |
UAV2 | [2500, 3500] | [?500, 500] | 3500 | 200 | 0 | [?60, 60] | |
Target | [2500, 3500] | [2500, 3500] | [2800, 3800] | [150, 300] | 0 | [?60, 60] | |
Evaluation episode | UAV1 | 0 | 0 | 3000 | 200 | 0 | 40 |
UAV2 | 3000 | 0 | 3500 | 200 | 0 | 40 | |
Target | 3000 | 3000 | 3000 | 220 | 0 | 45 |
"
Initial state | x/m | y/m | z/m | v/(m/s) | | | |
Training episode | UAV1 | [?200, 200] | [?300, 300] | 3000 | 200 | 0 | [?60, 60] |
UAV2 | [1500, 2500] | [?500, 500] | 3500 | 200 | 0 | [?60, 60] | |
Target | [1000, 2 000] | [2500, 3500] | [2800, 3800] | [150, 300] | 0 | [120, 240] | |
Evaluation episode | UAV1 | 0 | 0 | 3000 | 200 | 0 | 0 |
UAV2 | 2 000 | 0 | 3500 | 200 | 0 | 0 | |
Target | 1000 | 3000 | 3000 | 220 | 0 | 200 |
"
Initial State | x/m | y/m | z/m | v/(m/s) | | | |
Training episode | UAV1 | [?200, 200] | [?300, 300] | 3000 | 200 | 0 | [10, 70] |
UAV2 | [2800, 3200] | [?300, 300] | 3200 | 200 | 0 | [10, 70] | |
Target1 | [2500, 3500] | [2500, 3500] | [2900, 3100] | [180, 220] | 0 | [?165, ?105] | |
Target2 | [5500, 6500] | [2500, 3500] | [2900, 3100] | [180, 220] | 0 | [?165, ?105] | |
Evaluation episode | UAV1 | 0 | 0 | 3000 | 200 | 0 | 40 |
UAV2 | 3000 | 0 | 3200 | 200 | 0 | 40 | |
Target1 | 3000 | 3000 | 3000 | 200 | 0 | ?135 | |
Target2 | 6000 | 3000 | 3000 | 200 | 0 | ?135 |
"
Initial state | x/m | y/m | z/m | v/(m/s) | | | |
Training episode | UAV1 | [?200, 200] | [?200, 200] | 3000 | 200 | 0 | [20, 60] |
UAV2 | [2800, 3200] | [?200, 200] | 3200 | 200 | 0 | [20, 60] | |
Target1 | [2500, 3500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?155, ?115] | |
Target2 | [5500, 6500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?125, ?115] | |
Evaluation episode | UAV1 | 0 | 0 | 3000 | 200 | 0 | 40 |
UAV2 | 3000 | 0 | 3200 | 200 | 0 | 40 | |
Target1 | 3000 | 3000 | 3000 | 200 | 0 | ?135 | |
Target2 | 6000 | 3000 | 3000 | 200 | 0 | ?135 |
"
Initial state | x/m | y/m | z/m | v/(m/s) | | | |
Training episode | UAV1 | [?200, 200] | [?200, 200] | 3000 | 200 | 0 | [20, 60] |
UAV2 | [2800, 3200] | [?200, 200] | 3200 | 200 | 0 | [20, 60] | |
Target1 | [2500, 3500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?155, ?115] | |
Target2 | [5500, 6500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?125, ?115] | |
Evaluation episode | UAV1 | [?100, 100] | [?100, 100] | 3000 | 200 | 0 | [35, 45] |
UAV2 | [2900, 3100] | [?100, 100] | 3200 | 200 | 0 | [35, 45] | |
Target1 | [2500, 3500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?155, ?115] | |
Target2 | [5500, 6500] | [2800, 3200] | [2900, 3100] | [180, 220] | 0 | [?125, ?115] |
1 |
ZHOU K, WEI R, XU Z, et al An air combat decision learning system based on a brain-like cognitive mechanism. Cognitive Computation, 2020, 12 (1): 128- 139.
doi: 10.1007/s12559-019-09683-7 |
2 |
YANG Q M, ZHANG J D, SHI G Q Modeling of UAV path planning based on IMM under POMDP framework. Journal of Systems Engineering and Electronics, 2019, 30 (3): 545- 554.
doi: 10.21629/JSEE.2019.03.12 |
3 |
MCGREW J S, HOW J P, WILLIAMS B, et al Air-combat strategy using approximate dynamic programming. Journal of Guidance, Control, and Dynamics, 2010, 33 (5): 1641- 1654.
doi: 10.2514/1.46815 |
4 | ZHOU K, WEI R X, XU Z F, et al A brain like air combat learning system inspired by human learning mechanism. Proc. of IEEE/CSAA Guidance, Navigation and Control Conference, 2018, 286- 293. |
5 | XU G, WEI S, ZHANG H Application of situation function in air combat differential games. Proc. of the 36th Chinese Control Conference, 2017, 5865- 5870. |
6 | PARK H, LEE B Y, TAHK M J, et al Differential game based air combat maneuver generation using scoring function matrix. International Journal of Aeronautical & Space Sciences, 2015, 17 (2): 204- 213. |
7 | SMITH R E, DIKE B A, MEHRA R K, et al Classifier systems in combat: two-sided learning of maneuvers for advanced fighter aircraft. Computer Methods in Applied Mechanics & Engineering, 2000, 186 (2): 421- 437. |
8 |
HANG C Q, DONG K S, HUANG H Q, et al Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization. Journal of Systems Engineering and Electronics, 2018, 29 (1): 86- 97.
doi: 10.21629/JSEE.2018.01.09 |
9 | GUO H F, HOU M Y, ZHANG Q J, et al UCAV robust maneuver decision based on statistics principle. Acta Armamentarii, 2017, 38 (1): 160- 167. |
10 | FU L, XIE H An UAV air-combat decision expert system based on receding horizon control. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41 (11): 1994- 1999. |
11 | ROGER W S, ALAN E B. Neural network models of air combat maneuvering. Las Cruces, U.S.: New Mexico State University, 1992. |
12 | DING L J, YANG Q M Research on air combat maneuver decision of UAVs based on reinforcement learning. Avionics Technology, 2018, 49 (2): 29- 35. |
13 | LIU P, MA Y A deep reinforcement learning based intelligent decision method for UCAV air combat. Proc. of Asian Simulation Conference, 2017, 274- 286. |
14 | ZUO J L, YANG R N, ZHANG Y, et al Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning. Acta Aeronautica et Astronautica Sinica, 2017, 38 (10): 217- 230. |
15 |
ZHANG X B, LIU G Q, YANG C J, et al Research on air confrontation maneuver decision-making method based on reinforcement learning. Electronics, 2018, 7 (11): 279.
doi: 10.3390/electronics7110279 |
16 | YANG Q M, ZHU Y, ZHANG J D, et al. UAV air combat autonomous maneuver decision based on DDPG algorithm. Proc. of the IEEE 15th International Conference on Control and Automation, 2019: 37−42. |
17 |
YANG Q M, ZHANG J D, SHI G Q, et al Maneuver decision of UAV in short-range air combat based on deep reinforcement learning. IEEE Access, 2020, 8, 363- 378.
doi: 10.1109/ACCESS.2019.2961426 |
18 |
WAN K F, GAO X G Robust motion control for UAV in dynamic uncertain environments using deep reinforcement learning. Remote Sensing, 2020, 12, 640.
doi: 10.3390/rs12040640 |
19 | ROBERT L S. Fighter combat—tactics and maneuvering. Maryland: Naval Institute Press, 1985. |
20 | XI Z F, XU A, KOU Y X, et al Decision process of multi-aircraft cooperative air combat maneuver. Systems Engineering and Electronics, 2020, 42 (2): 381- 389. |
21 | LI J X, TONG M A, JIN D K Bargaining differential game theory and application to multiple-airplane combat analysis. Systems Engineering-Theory & Practice, 1997, 6 (6): 68- 72. |
22 | WANG Y N, JIANG Y X An intelligent differential game on air combat decision. Flight Dynamics, 2003, 21 (1): 66- 70. |
23 | ZUO J L, ZHANG Y, YANG R N, et al Reconstruction and evaluation of medium-rang cooperation air combat decision-making process with two phase clustering. Systems Engineering and Electronics, 2020, 42 (1): 108- 117. |
24 | XIE R Z, LI J Y, LUO D L Research on maneuvering decisions for multi-UAVs Air combat. Proc. of the 11th IEEE International Conference on Control & Automation, 2014, 767- 772. |
25 | LUO D L, SHEN C L, WANG B, et al Air combat decision-making for cooperative multiple target attack using heuristic adaptive genetic algorithm. Proc. of the International Conference on Machine Learning and Cybernetics, 2005, 473- 478. |
26 |
SU M C, LAI S C, LIN S C, et al A new approach to multi-aircraft air combat assignments. Swarm and Evolutionary Computation, 2012, 6, 39- 46.
doi: 10.1016/j.swevo.2012.03.003 |
27 | WANG Y, ZHANG W, LI Y An efficient clonal selection algorithm to solve dynamic weapon-target assignment game model in UAV cooperative aerial combat. Proc. of the 35th Chinese Control Conference, 2016, 9578- 9581. |
28 |
TAL S, STEVE R, DAVE G Assigning micro UAVs to task tours in an urban terrain. IEEE Trans. on Control Systems Technology, 2007, 15 (4): 601- 612.
doi: 10.1109/TCST.2007.899154 |
29 | . PENG P, WEN Y, YANG Y, et al. Multiagent bidirectionally-coordinated nets: emergence of human-level coordination in learning to play star craft combat games. arXiv preprint arXiv: 1703.10069v4, 2017. |
30 | SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms. Proc. of the 31st International Conference on Machine Learning, 2014, 605- 619. |
31 | SUTTON R, MCALLESTER D, SINGH S, et al Policy gradient methods for reinforcement learning with function approximation. Proc. of the 13th Annual Neural Information Processing Systems Conference, 1999, 1057- 1063. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||