1 |
DING F, QIU L, CHEN T W. Reconstruction of continuous-time systems from their nonuniformly sampled discrete-time systems. Automatica, 2009, 45 (2): 324- 332.
doi: 10.1016/j.automatica.2008.08.007
|
2 |
WANG H W, XIA H. Fuzzy identification for nonuniformly multi-rate sampled nonlinear systems. Control and Decision, 2015, 30 (9): 1646- 1652.
|
3 |
LIU R R, PAN T H, LI Z M. Hierarchical stochastic gradient identification for Hammerstein-Wiener systems with non-uniformly sampling. Control and Decision, 2015, 30 (8): 1491- 1496.
|
4 |
MIZUMOTO I, CHEN T W, OHDAIRA S, et al. Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system. Automatica, 2007, 43 (12): 2077- 2085.
doi: 10.1016/j.automatica.2007.04.017
|
5 |
DING F, LIU P X, YANG H Z. Parameter identification and intersample output estimation for dual-rate systems. Part A-Systems and Humans, 2008, 38 (4): 966- 975.
doi: 10.1109/TSMCA.2008.923030
|
6 |
DING F, CHEN T W, XIAO D Y. Identification of non-uniformly periodically sampled multirate systems. Acta Electronica Sinica, 2004, 32 (9): 1414- 1420.
|
7 |
XIE L, DING F. Identification method for non-uniformly sampled-data systems. Control Engineering of China, 2008, 15 (4): 402- 404, 460.
|
8 |
DING F, CHEN T W, XIAO D Y. State-space modeling and identification of general dual-rate stochastic systems. Acta Automatica Sinica, 2004, 30 (5): 652- 663.
|
9 |
DING J, DING F. The residual based extended least squares identification method for dual-rate systems. Computers & Mathematics with Applications, 2008, 56 (6): 1479- 1487.
|
10 |
DING F, CHEN T W. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica, 2004, 40 (10): 1739- 1748.
doi: 10.1016/j.automatica.2004.05.001
|
11 |
CHEN J, LIU Y J, XU L. A new filter-based stochastic gradient algorithm for dual-rate ARX models. International Journal of Adaptive Control and Signal Processing, 2018, 32 (11): 1557- 1568.
doi: 10.1002/acs.2930
|
12 |
CHANG F, LUUS R. A noniterative method for identification using Hammerstein model. IEEE Trans. on Automatic Control, 1971, 16 (5): 464- 468.
doi: 10.1109/TAC.1971.1099787
|
13 |
DING F, CHEN T W. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica, 2005, 41 (2): 315- 325.
doi: 10.1016/j.automatica.2004.10.010
|
14 |
DING F, CHEN T W. Hierarchical least squares identification methods for multivariable systems. IEEE Trans. on Automatic Control, 2005, 50 (3): 397- 402.
doi: 10.1109/TAC.2005.843856
|
15 |
BAI E W, LI D. Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. on Automatic Control, 2004, 49 (11): 1929- 1940.
doi: 10.1109/TAC.2004.837592
|
16 |
NARENDRA K, GALLMAN P. An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. on Automatic Control, 1966, 11 (3): 546- 550.
doi: 10.1109/TAC.1966.1098387
|
17 |
JIA L, LI X L. Identification of Hammerstein model: review and prospect. Control Theory & Applications, 2014, 31 (1): 1- 10.
|
18 |
BAI E W, FU M Y. A blind approach to Hammerstein model identification. IEEE Trans. on Signal Processing, 2002, 50 (7): 1610- 1619.
doi: 10.1109/TSP.2002.1011202
|
19 |
DING F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Applied Mathematical Modelling, 2013, 37 (4): 1694- 1704.
|
20 |
XU X P, QIAN F C, WANG F. Identification of Hammerstein model based on improved particle swarm optimization algorithm. Computer Engineering, 2008, 34 (14): 200- 202.
|
21 |
DING F, LIU X M, GU Y. An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. Journal of the Franklin Institute, 2016, 353 (2): 398- 408.
doi: 10.1016/j.jfranklin.2015.10.025
|
22 |
CHEN J, WANG X P. Identification of Hammerstein systems with continuous nonlinearity. Information Processing Letters, 2015, 115 (11): 822- 827.
doi: 10.1016/j.ipl.2015.06.004
|
23 |
DING F, CHEN H B, XU L, et al. A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2018, 355 (8): 3737- 3752.
doi: 10.1016/j.jfranklin.2018.01.052
|
24 |
FANG L, WANG J D, ZHANG Q H. Identification of extended Hammerstein systems with hysteresis type input nonlinearities described by Preisach model. Nonlinear Dynamics, 2015, 79 (2): 1257- 1273.
|
25 |
CHEN J, LIU Y J, WANG X H. Recursive least squares algorithm for nonlinear dual-rate systems using missing-output estimation model. Circuits Systems & Signal Processing, 2016, 36 (4): 1- 20.
|
26 |
LI X L, ZHOU L C, SHENG J, et al. Recursive least squares parameter estimation algorithm for dual-rate sampled-data nonlinear systems. Nonlinear Dynamics, 2014, 76 (2): 1327- 1334.
|
27 |
WANG D Q, LIU H B, DING F. Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. on Control Systems Technology, 2015, 23 (5): 1952- 1960.
doi: 10.1109/TCST.2014.2387216
|
28 |
WANG D Q, ZHANG Z, YUAN J Y. Maximum likelihood estimation method for dual-rate Hammerstein systems. International Journal of Control, Automation and Systems, 2017, 15 (2): 698- 705.
|
29 |
LI X L. Estimation methods for nonlinear systems with multirate sampling. Wuxi, China: Jiangnan University, 2014.
|
30 |
BAI E W. Identification of linear systems with hard input nonlinearities of known structure. Automatica, 2002, 38 (5): 853- 860.
doi: 10.1016/S0005-1098(01)00281-3
|