Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 168-184.doi: 10.21629/JSEE.2020.01.17
收稿日期:
2019-04-11
出版日期:
2020-02-20
发布日期:
2020-02-25
Wenjie ZHANG1(), Shengnan FU2(), Wei LI1(), Qunli XIA1,*()
Received:
2019-04-11
Online:
2020-02-20
Published:
2020-02-25
Contact:
Qunli XIA
E-mail:bit_zhangwenjie@outlook.com;1041500186@qq.com;lion_lee1994@126.com;1010@bit.edu.cn
About author:
ZHANG Wenjie was born in 1992. He received his B.E. degree from Beijing Institute of Technology in 2015. He is currently a doctoral student in School of Aerospace Engineering, Beijing Institute of Technology. His main research interests include flight vehicle design, guidance and control. E-mail: Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 168-184.
Wenjie ZHANG, Shengnan FU, Wei LI, Qunli XIA. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 168-184.
1 | ZARCHAN P. Tactical and strategic missile guidance. 4th ed Reston: American Institute of Aeronautics and Astronautics, 2002. |
2 | SIOURIS G M. Missile guidance and control systems. New York: Springer Verlag, 2004. |
3 | NESLINE F W, ZARCHAN P. A new look at classical vs modern homing missile guidance. Journal of Guidance, Control, and Dynamics, 1981, 4 (1): 78- 85. |
4 | JEON I S, LEE J I. Optimality of proportional navigation based on nonlinear formulation. IEEE Trans. on Aerospace and Electronic Systems, 2012, 46 (4): 2051- 2055. |
5 | XIAO J Z, MING Y L, YANG L I. Impact angle control over composite guidance law based on feedback linearization and finite time control. Journal of Systems Engineering and Electronics, 2018, 29 (5): 160- 169. |
6 | LIU X, SHEN Z, LU P. Closed-loop optimization of guidance gain for constrained impact. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 453- 460. |
7 |
GOPALAN A, RATNOO A, GHOSE D. Generalized time optimal impact angle constrained interception of moving targets. Journal of Guidance, Control, and Dynamics, 2017, 40 (8): 2115- 2120.
doi: 10.2514/1.G002384 |
8 |
JEO I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles. IEEE Trans. on Control Systems Technology, 2006, 14 (2): 260- 266.
doi: 10.1109/TCST.2005.863655 |
9 |
CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control. Journal of Guidance, Control, and Dynamics, 2016, 39 (4): 852- 872.
doi: 10.2514/1.G001618 |
10 |
JEON I S, LEE J I, TAHK M J. Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation. Journal of Guidance, Control, and Dynamics, 2016, 39 (8): 1887- 1892.
doi: 10.2514/1.G001681 |
11 | KIM E, CHO H, LEE Y. Terminal guidance algorithms of missiles maneuvering in the vertical plane. Proc. of the Guidance, Navigation and Control Conference, 1996: 1-7. |
12 | YONGHO K. Guidance and control system design for impact angle control of guided bombs. Proc. of the International Conference on Control, Automation and Systems, 2010: 2138-2143. |
13 |
TAEK L S, SANG J S, HANGIU C. Impact angle control for planar engagements. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (4): 1439- 1444.
doi: 10.1109/7.805460 |
14 |
RYOO C K, CHO H J, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans. on Control Systems Technology, 2006, 14 (3): 483- 492.
doi: 10.1109/TCST.2006.872525 |
15 | LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction. Journal of Guidance, Control, and Dynamics, 2006, 29 (2): 269- 278. |
16 | YORK R J, PASTRICK H L. Optimal terminal guidance with constrains at final time. Proc. of the Guidance and Control Conference, 1976: 42-46. |
17 | STALLARD D V. Optimal missile guidance for low miss and perpendicular impact. Proc. of the Guidance and Control Conference, 1979: 294-305. |
18 |
IDAN M, GOLAN O M, GUELMAN M. Optimal planar interception with terminal constraints. Journal of Guidance, Control and Dynamics, 1995, 18 (6): 1273- 1279.
doi: 10.2514/3.21541 |
19 |
GLIZER V Y. Optimal planar interception with fixed end conditions: closed-form solution. Journal of Optimization Theory and Applications, 1996, 88 (3): 503- 539.
doi: 10.1007/BF02192197 |
20 | LEE Y, RYOO C, KIM E. Optimal guidance with constraints on impact angle and terminal acceleration. Proc. of the Guidance, Navigation, Control Conference, 2003: 1-7. |
21 | RYOO C K. Closed-form solutions of optimal guidance with terminal impact angle constraint. Proc. of the IEEE International Conference on Control Application, 2003: 504-509. |
22 | SONG T L, SHIN S J. Time-optimal impact angle control for vertical plane engagements. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (2): 738- 742. |
23 |
SONG T L, SHIN S J, CHO H. Impact angle control for planar engagements. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35 (4): 1439- 1444.
doi: 10.1109/7.805460 |
24 | RAHBAR N, BAHRAMI M, MENHAJ M. A new neuro-based solution for closed-loop optimal guidance with terminal constraints. Proc. of the Guidance, Navigation, and Control Conference, 1999: 680-689. |
25 | BYUNG S K, JANG G L, HYUNG S H. Biased PNG law for impact with angular constraint. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34 (1): 227- 287. |
26 | KORAY S E, OSMAN M. Indirect control of impact angle against stationary targets using biased PPN. Proc. of the Guidance, Navigation, and Control Conference, 2010: 1-7. |
27 | JEONG S K, CHO S J, KIM E G. Angle constraint biased PNG. Proc. of the 5th Asian Control Conference, 2004, 3: 1849-1854. |
28 | KIM M, GRIDER K. Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Trans. on Aerospace and Electronic Systems, 1973, 9 (6): 852- 859. |
29 |
PARK B G, KIM T H, TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker's look angle limits. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (3): 1241- 1256.
doi: 10.1109/TAES.2016.150415 |
30 |
SACHIT R, DEBASISH G. Terminal impact angle constrained guidance laws using variable structure systems theory. IEEE Trans. on Control Systems Technology, 2013, 21 (6): 2350- 2359.
doi: 10.1109/TCST.2013.2276476 |
31 | LEE C H, KIM T H, TAHK M J. Design of impact angle control guidance laws via high-performance sliding mode control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2012, 227 (2): 235- 253. |
32 | DOU R B, ZHANG K. Research on terminal guidance law for re-entry vehicle based on second-order sliding mode control. Journal of Astronautics, 2011, 32 (10): 2109- 2114. |
33 | XIONG J H, TANG S J, GUO J. Design of variable structure guidance law for head-on interception based on variable coefficient strategy. Acta Armamentarii, 2014, 35 (1): 134- 139. |
34 | UTKIN V I. Sliding modes in control and optimization. New York: Spinger-Verlag, 1992. |
35 | SHIMA T, IDAN M, GOLAN O M. Sliding mode control for integrated missile autopilot guidance. Journal of Guidance, Control, and Dynamics, 2006, 29 (2): 250- 260. |
36 |
SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans. Aerospace Electronic Systems, 2009, 45 (1): 110- 124.
doi: 10.1109/TAES.2009.4805267 |
37 |
ZHAO Y, SHENG Y Z, LIU X D. Sliding mode control based guidance law with impact angle constrain. Chinese Journal of Aeronautics, 2014, 27 (1): 145- 52.
doi: 10.1016/j.cja.2013.12.011 |
38 | SHIMA T. Intercept-angle guidance. Journal of Guidance, Control, and Dynamics, 2014, 27 (1): 145- 52. |
39 |
CASTANOS F, FRIDMAN L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. on Automatic Control, 2006, 51 (5): 853- 858.
doi: 10.1109/TAC.2006.875008 |
40 | UTKIN V, SHI J. Integral sliding mode in systems operating under uncertainty conditions. Proc. of the 35th IEEE Conference on Decision and Control, 1996, 4: 4591-4596. |
41 |
CAO WJ, XU J X. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. on Automatic Control, 2004, 49 (8): 1355- 1360.
doi: 10.1109/TAC.2004.832658 |
42 |
LAGHROUCHE S, PLESTAN F, GLIMINEAU A. Higher order sliding mode control based on integral sliding mode. Automatica, 2007, 43 (3): 531- 537.
doi: 10.1016/j.automatica.2006.09.017 |
43 |
ZONG Q, ZHAO Z S, ZHANG J. Higher order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory and Application, 2010, 4 (7): 1282- 1289.
doi: 10.1049/iet-cta.2008.0610 |
44 | BARAMBONES O, GARRIDO A J, MASEDA F J. Integral sliding-mode controller for induction motor based on field-oriented control theory. IET Control Theory and Applications, 2007, 3, 786- 794. |
45 |
LIN F J, CHEN S Y, HUANG M S. Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system. IET Control Theory and Applications, 2011, 5 (11): 1287- 1303.
doi: 10.1049/iet-cta.2010.0237 |
46 | KAO S T, CHIOU W J, HO M T. Integral sliding mode control for trajectory tracking control of an omnidirectional mobile robot. Proc. of the 8th Asian Publication Control Conference, 2011: 765-770. |
47 |
LU K F, XIA Y Q. Finite-time fault tolerant control for rigid spacecraft with actuator saturations. IET Control Theory and Applications, 2013, 7 (11): 1529- 1539.
doi: 10.1049/iet-cta.2012.1031 |
48 |
CHEN R H, SPEYER J L, LIANOS D. Optimal intercept missile guidance strategies with autopilot. Journal of Guidance, Control, and Dynamics, 2010, 33 (4): 1264- 1272.
doi: 10.2514/1.44618 |
49 |
ZHANG Z X, LI S H, LUO S. Composite guidance laws based on sliding mode control with impact angle constraint and autopilot lag. Transactions of the Institute of Measurement and Control, 2013, 35 (6): 764- 776.
doi: 10.1177/0142331213478327 |
50 | DIAO Z S, SHAN J Y. Back-stepping guidance law with autopilot lag for attack angle constrained trajectories. Journal of Astronautics, 2014, 35 (7): 818- 826. |
51 | QU P P, ZHOU D. Three dimensional guidance law accounting for second-order dynamics of missile autopilot. Acta Aeronautica of Astronautica Sinica, 2011, 32 (11): 2096- 2105. |
52 | ZHOU D, QU P P, SUN S. A guidance law with terminal impact angle constraint accounting for missile autopilot. Journal of Dynamic Systems, Measurement, and Control, 2013, 135 (5): 1- 10. |
53 |
HOU M Z, LIANG X L, DUAN G R. Adaptive block dynamic surface control for integratedmissile guidance and autopilot. Chinese Journal of Aeronautics, 2013, 26 (3): 741- 750.
doi: 10.1016/j.cja.2013.04.035 |
54 |
BHAT SP, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. on Automatic Control, 1998, 43 (5): 678- 682.
doi: 10.1109/9.668834 |
55 | BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems. SIAM Journal of Control and Optimization, 2000, 38 (3): 751- 766. |
56 | LI P. Research and application of traditional and higher-order sliding mode control. Changsha, China: National University of Defense Technology, 2011. |
57 | KHALIL H. Nonlinear systems. New Jersey: Prentice Hall, 1996, 83- 87. |
58 | LIU D W, XIA Q L, WU T. Trajectory shaping guidance law with terminal impact angle constraint. Journal of Beijing Institute of Technology, 2011, 20 (3): 345- 350. |
59 | ZHANG W J, LU T Y, XIA Q L. Sliding mode guidance law anti early warning vehicle based on extended state observer. Systems Engineering and Electronics, 2019, 41 (5): 1087- 1093. |
60 | KEE P, LI D, CHAI S. Near optimal midcourse guidance law for flight vehicle. Proc. of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 2006: 583-590. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||