Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 142-155.doi: 10.21629/JSEE.2020.01.15
收稿日期:
2018-08-13
出版日期:
2020-02-20
发布日期:
2020-02-25
Na WANG1,2,*(), Yuchao SU1(), Xiaohong CHEN1(), Xia LI1,2(), Dui LIU1()
Received:
2018-08-13
Online:
2020-02-20
Published:
2020-02-25
Contact:
Na WANG
E-mail:wangna@szu.edu.cn;yuchaosu@126.com;chenxh@szu.edu.cn;lixia@szu.edu.cn;liud@szu.edu.cn
About author:
WANG Na was born in 1977. She received her B.S. degree in electronic engineering from Dalian Maritime University in 1998. She later took a successive postgraduate and doctoral programs of study and was conferred a Ph.D. degree on signal and information processing by Dalian Maritime University in 2003. Now she is a professor of College of Electronics and Information Engineering at Shenzhen University. Her main research interests include intelligent computing, machine learning and pattern recognition. E-mail: Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 142-155.
Na WANG, Yuchao SU, Xiaohong CHEN, Xia LI, Dui LIU. A $\boldsymbol{\varepsilon}$-indicator-based shuffled frog leaping algorithm for many-objective optimization problems[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 142-155.
1 |
CHAND S, WAGNER M. Evolutionary many-objective optimization: a quick-start guide. Surveys in Operations Research and Management Science, 2015, 20 (2): 35- 42.
doi: 10.1016/j.sorms.2015.08.001 |
2 | BECHIKH S, ELARBI M, SAID L B. Many-objective optimization using evolutionary algorithms: a survey. Recent Advances in Evolutionary Multi-objective Optimization, 2017, 20, 105- 137. |
3 | DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-Ⅱ. Proc. of the 6th International Conference on Parallel Problem Solving from Nature, 2000: 849-858. |
4 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm. Technical Report 103. Zurich: Swiss Federal Institute of Technology, 2001. |
5 | FARINA M, AMATO P. On the optimal solution definition for many-criteria optimization problems. Annual Meeting of the North American Fuzzy Information Processing Society Proceedings, 2002, 233- 238. |
6 | LIN Q Z, CHEN J Y, ZHAN Z H, et al. A hybrid evolutionary immune algorithm for multi-objective optimization problems. IEEE Trans. on Evolutionary Computation, 2016, 20 (5): 711- 729. |
7 | SU Y C, LIN Q Z, WANG J, et al. A constrained solution update strategy for multiobjective evolutionary algorithm based on decomposition. Complexity, 2019, 3251349. |
8 |
LI B D, TANG K, LI J L, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. on Evolutionary Computation, 2016, 20 (6): 924- 938.
doi: 10.1109/TEVC.2016.2549267 |
9 |
WANG H D, YAO Y. Corner sort for Pareto-based many-objective optimization. IEEE Trans. on Cybernetics, 2014, 44 (1): 92- 102.
doi: 10.1109/TCYB.2013.2247594 |
10 |
HE Z N, YEN G G, ZHANG J. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Trans. on Evolutionary Computation, 2014, 18 (2): 269- 285.
doi: 10.1109/TEVC.2013.2258025 |
11 |
ELARBI M, BECHIKH S, GUPTA A, et al. A new decomposition-based NSGA-Ⅱ for many-objective optimization. IEEE Trans. on Systems, Man, and Cyberentics: Systems, 2018, 48 (7): 1191- 1210.
doi: 10.1109/TSMC.2017.2654301 |
12 |
LI M Q, YANG S X, LIU X H. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans. on Evolutionary Computation, 2014, 18 (3): 348- 365.
doi: 10.1109/TEVC.2013.2262178 |
13 |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535 |
14 |
LI K, DEB K, ZHANG Q F, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. on Evolutionary Computation, 2015, 19 (5): 694- 716.
doi: 10.1109/TEVC.2014.2373386 |
15 | ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2017, 11 (6): 712- 731. |
16 |
WANG L P, ZHANG Q F, ZHOU A M, et al. Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans. on Evolutionary Computation, 2016, 20 (3): 475- 480.
doi: 10.1109/TEVC.2015.2457616 |
17 |
CAI X Y, YANG Z X, FAN Z, et al. Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. on Cybernetics, 2017, 47 (9): 2824- 2837.
doi: 10.1109/TCYB.2016.2586191 |
18 |
ROSTAMI S, NERI F. A fast hypervolume driven selection mechanism for many-objective optimisation problems. Swarm and Evolutionary Computation, 2017, 34, 50- 67.
doi: 10.1016/j.swevo.2016.12.002 |
19 | VO{\ss} T, FRIEDRICH T, BRINGMANN K, et al. Scaling up indicator-based MOEAs by approximating the least hypervolume contributor: a preliminary study. Proc. of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010: 1975-1978. |
20 | ISHIBUCHI H, TSUKAMOTO N, SAKANE Y, et al. Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. Proc. of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010: 527-534. |
21 | ZITZLER E, KNZLI S. Indicator-based selection in multiobjective search. Proc. of the 8th International Conference on Parallel Problem Solving from Nature (PPSN Ⅷ), 2004: 832-842. |
22 |
MA X L, ZHANG Q F, TIAN G D, et al. On Tchebycheff decomposition approaches formulti-objective evolutionary optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (2): 226- 244.
doi: 10.1109/TEVC.2017.2704118 |
23 | ALAN D M, GREGORIO T P, JOSE H B Z, et al. R2-based multi/many-objective particle swarm optimization. Computational Intelligence and Neuroscience, 2016, 1898527. |
24 |
EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 2003, 129 (3): 210- 225.
doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) |
25 |
LUO J P, LI X, CHEN M. Improved shuffled frog leaping algorithm for solving CVRP. Journal of Electronics and Information Technology, 2011, 33 (2): 429- 434.
doi: 10.3724/SP.J.1146.2010.00328 |
26 |
WANG N, LI X, CHEN X H. Fast three-dimensional Otsu thresholding with shuffled frog leaping algorithm. Pattern Recognition Letters, 2010, 31 (13): 1809- 1815.
doi: 10.1016/j.patrec.2010.06.002 |
27 |
RAHIMI-VAHED A, MIRZAEI A H. Solving a bi-criteria permutation flow-shop problem using shuffled frog leaping algorithm. Soft Computing, 2008, 12 (5): 435- 452.
doi: 10.1007/s00500-007-0210-y |
28 | RAHIMI-VAHED A, DANGCHI M, RAFIEI H, et al. A novel hybrid multi-objective shuffled frog leaping algorithm for a bi-criteria permutation flow shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2009, 41 (11): 1227- 1239. |
29 |
RAHIMI-VAHED A, MIRZAEI A H. A hybrid multi-objective shuffled frog leaping algorithm for a mixed-model assembly line sequencing problem. Computers and Industrial Engineering, 2007, 53 (4): 642- 666.
doi: 10.1016/j.cie.2007.06.007 |
30 |
ZHANG Y H, GONG Y J, GU T L, et al. DECAL: decomposition-based coevolutionary algorithm for many-objective optimization. IEEE Trans. on Cybernetics, 2019, 49 (1): 27- 41.
doi: 10.1109/TCYB.2017.2762701 |
31 | MIETTINEN K. Nonlinear multi-objective optimization. USA: Kluwer Academic, 2001. |
32 | ZITZLER E, KNZLI S. Indicator-based selection in multiobjective search. Proc. of the 8th International Conference on Parallel Problem Solving from Nature (PPSN Ⅷ), 2004: 832-842. |
33 |
ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. on Evolutionary Computation, 2003, 7 (2): 117- 132.
doi: 10.1109/TEVC.2003.810758 |
34 |
BASSEUR M, LIEFOOGHE A, LE K, et al. The efficiency of indicator-based local search for multi-objective combinatorial optimization problems. Journal of Heuristics, 2012, 18 (2): 263- 296.
doi: 10.1007/s10732-011-9178-y |
35 | DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization. Advanced Information and Knowledge Processing Series. Berlin, Germany: Springer, 2005: 105-145. |
36 | HUBAND S, BARONE L, WHILE L, et al. A scalable multi-objective test problem toolkit. Lecture Notes in Computer Science, 2005, 3410, 280- 295. |
37 |
HUBAND S, HINGSTON P, BARONE L, et al. A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans. on Evolutionary Computation, 2006, 10 (5): 477- 506.
doi: 10.1109/TEVC.2005.861417 |
38 |
BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 2011, 19 (1): 45- 76.
doi: 10.1162/EVCO_a_00009 |
39 | RAQUEL H G, COELLO COELLO C A. Improved metaheuristic based on the R2 indicator for many-objective optimization. Proc. of the Annual Conference on Genetic and Evolutionary Computation, 2015: 679 -686. |
40 | KNOWLES J, THIELE L, ZITZLER E. A tutorial on the performance assessment of stochastive multiobjective optimizers. Technical report TIK-Report No. 214. Zurich: Computer Engineering and Networks Laboratory, ETH, 2005. |
41 | LI M Q, YANG S X, LIU X H, et al. A comparative study on evolutionary algorithms for many-objective optimization. Proc. of the 7th International Conference on Evolutionary Multi-Criterion Optimization, 2013: 261-275. |
42 | BLEULER S, LAUMANNS M, THIELE L, et al. PISA——a platform and programming language independent interface for search algorithms. Proc. of the International Conference on Evolutionary Multi-Criterion Optimization, 2003: 494-508. |
43 |
SU Y C, WANG J, MA L J, et al. A hybridized angle-encouragement-based decomposition approach for many-objective optimization problems. Applied Soft Computing, 2019, 78, 355- 372.
doi: 10.1016/j.asoc.2019.02.026 |
44 |
BEUME N, NAUJOKS B, EMMERICH M. SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal on Operational Research, 2007, 181 (3): 1653- 1669.
doi: 10.1016/j.ejor.2006.08.008 |
45 | SCHOTT J R. Fault tolerant design using single and multi-criteria genetic algorithm optimization. Boston, USA: Massachusetts Institute of Technology, 1995. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||