1 |
NITHILA E E, KUMAR S S. Segmentation of lung from CT using various active contour models. Biomedical Signal Processing and Control, 2019, 47 (1): 57- 62.
|
2 |
KHADIDOS A, SANCHEZ V, LI C T. Weighted level set evolution based on local edge Features for medical image segmentation. IEEE Trans. on Image processing, 2017, 26 (4): 1979- 1991.
|
3 |
FANG L, QIU T S, ZHAO H Y, et al. A hybrid active contour model based on global and local information for medical image segmentation. Multidimensional Systems and Signal Processing, 2019, 30 (2): 689- 703.
doi: 10.1007/s11045-018-0578-0
|
4 |
GHADIMI S, ABRISHAMI H, GREBE R, et al. Skull segmentation and reconstruction from newborn CT images using coupled level sets. IEEE Journal of Biomedical and Health Informatics, 2015, 20 (2): 563- 573.
|
5 |
KASS M, TERZOPOULUS A, TERZOPOULUS D. Snakes: active contour model. International Journal of Computer Vision, 1988, 1 (4): 321- 331.
|
6 |
XU C, PRINCE J L. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 1998, 7 (3): 359- 369.
|
7 |
CHAN T F, VESE L A. Active contours without edges. IEEE Trans. on Image Processing, 2001, 10 (2): 266- 277.
|
8 |
MICHAILOVICH O, RATHI Y, TANNENBAUM A. Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. on Image Processing, 2007, 16 (11): 2787- 2801.
doi: 10.1109/TIP.2007.908073
|
9 |
WU H, APPIA V, YEZZI A. Numerical conditioning problems and solutions for nonparametric i.i.d. statistical active contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1298- 1311.
doi: 10.1109/TPAMI.2012.207
|
10 |
ZHANG K, ZHANG L, LAM K. A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. on Cybernetics, 2016, 46 (2): 546- 557.
doi: 10.1109/TCYB.2015.2409119
|
11 |
NIU S, CHEN Q, SISTERNES L D, et al. Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognition, 2017, 61 (1): 104- 119.
|
12 |
DING K, XIAO L, WENG G. Active contours driven by local pre-fitting energy for fast image segmentation. Pattern Recognition Letters, 2018, 104 (1): 29- 36.
|
13 |
WANG L, CHANG Y, WANG H, et al. An active contour model based on local fitted images for image segmentation. Information Sciences, 2017, 418 (1): 61- 73.
|
14 |
LIU C, LIU W, XING W. A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation. Journal of Visual Communication and Image Representation, 2019, 59 (1): 89- 107.
|
15 |
BRESSON X, VANDERGHEYNST P, THIRAN J P. A variational model for object segmentation using boundary information and shape prior driven by the mumford-shah functional. International Journal of Computer Vision, 2006, 68 (2): 145- 162.
|
16 |
CHAN T, ZHU W. Level set based shape prior segmentation. Proc. of the Computer Vision and Pattern Recognition, 2005, 1164- 1170.
|
17 |
CREMERS D, ROUSSON M, DERICHE R. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision, 2007, 72 (2): 195- 215.
|
18 |
FOULONNEAU A, CHARBONNIER P, HEITZ F. Affine-invariant geometric shape priors for region-based active contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28 (8): 1352- 1357.
doi: 10.1109/TPAMI.2006.154
|
19 |
LEVENTON M E, FAUGERAS O, GRIMSON W E L, et al. Level set based segmentation with intensity and curvature priors. Proc. of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 2000, 4- 11.
|
20 |
LEVENTON M E, GRIMSON W E L, FAUGERAS O. Statistical shape influence in geodesic active contours. Proc. of the Computer Vision and Pattern Recognition, 2000, 316- 323.
|
21 |
ZHOU Z, DAI M, ZHONG H. Parametric shape prior model used in image segmentation. Journal of Systems Engineering and Electronics, 2016, 27 (5): 1115- 1121.
doi: 10.21629/JSEE.2016.05.19
|
22 |
CHENG M M, MITRA N J, HUANG X, et al. Salient shape: group saliency in image collections. Visual Computer, 2014, 30 (4): 443- 453.
doi: 10.1007/s00371-013-0867-4
|
23 |
KIM J, FISHER J W, YEZZI A, et al. A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. on Image Processing, 2005, 14 (10): 1486- 1502.
doi: 10.1109/TIP.2005.854442
|
24 |
GONG M, LI H, ZHANG X, et al. Nonparametric statistical active contour based on inclusion degree of fuzzy sets. IEEE Trans. on Fuzzy Systems, 2016, 24 (5): 1176- 1192.
doi: 10.1109/TFUZZ.2015.2505328
|
25 |
NIU Y, CAO J, ZHOU Z. An adaptive stopping active contour model for image segmentation. Journal of Electrical Engineering and Technology, 2019, 14 (1): 445- 453.
doi: 10.1007/s42835-018-00030-8
|
26 |
HANBAY K, TALU M F. A novel active contour model for medical images via the Hessian matrix and eigenvalues. Computers and Mathematics with Applications, 2018, 75 (9): 3081- 3104.
doi: 10.1016/j.camwa.2018.01.033
|
27 |
HSIEH C W, CHEN C Y. An adaptive level set method for improving image segmentation. Multimedia Tools and Applications, 2018, 77 (15): 20087- 20102.
doi: 10.1007/s11042-017-5434-y
|
28 |
SOOMRO S, MUNIR A, CHOI K N. Fuzzy c-means clustering based active contour model driven by edge scaled region information. Expert Systems with Applications, 2019, 120 (1): 387- 396.
|
29 |
LI C, XU C, GUI C, et al. Level set evolution without reinitialization: a new variational formulation. Proc. of the Computer Vision and Pattern Recognition, 2005, 430- 436.
|
30 |
MITICHE A, AYED I B. Variational and level set methods in image segmentation. Berlin: Springer Science & Business Media, 2010.
|