Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 118-129.doi: 10.21629/JSEE.2020.01.13
收稿日期:
2019-01-02
出版日期:
2020-02-20
发布日期:
2020-02-25
Longyue LI(), Chengli FAN*(), Qinghua XING(), Hailong XU(), Huizhen ZHAO()
Received:
2019-01-02
Online:
2020-02-20
Published:
2020-02-25
Contact:
Chengli FAN
E-mail:lilong_yue@126.com;ffq516@163.com;qh_xing@126.com;xhl_81329@163.com;margeryzhao@outlook.com
About author:
LI Longyue was born in 1988. He received his master and doctor degrees from Air Force Engineering University (AFEU) in 2012 and 2016, respectively. Now he is a lecturer in Air and Missile Defense College of AFEU. His research interests are modeling and simulation of missile defense operations, intelligent optimization algorithm, and operational research theory. He has published more than 40 papers, presided over a number of projects of the National Natural Science Foundation of China, Shaanxi Natural Science Foundation, China Post-doctoral Fund, etc. E-mail: Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 118-129.
Longyue LI, Chengli FAN, Qinghua XING, Hailong XU, Huizhen ZHAO. Optimal index shooting policy for layered missile defense system[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 118-129.
"
Constant | Variable | Variables declaration | Variation tendency | |
| BM threat values | |||
Kill probabilities | ||||
Demise probabilities |
"
Example | |||||||||
1 | 0 | 50 | 0.95 | 0.80 | 0.25 | 0.10 | |||
2 | 0 | 60 | 0.90 | 0.60 | 0.10 | 0.10 | |||
1 | 3 | 0 | 70 | 0.85 | 0.60 | 0.20 | 0.05 | 2/3 | 1/3 |
4 | 0 | 100 | 0.90 | 0.90 | 0.12 | 0.06 | |||
5 | 0 | 125 | 0.80 | 0.80 | 0.05 | 0.05 | |||
1 | 0 | 100 | 0.95 | 0.75 | 0.09 | 0.13 | |||
2 | 0 | 150 | 0.60 | 0.20 | 0.40 | 0.40 | |||
2 | 3 | 0 | 200 | 0.45 | 0.20 | 0.45 | 0.25 | 1/4 | 3/4 |
4 | 0 | 750 | 0.65 | 0.45 | 0.25 | 0.05 | |||
5 | 0 | 1 000 | 0.45 | 0.25 | 0.45 | 0.25 |
"
Example 1 | ||||
Policy | System | Minimum | Mean | Maximum |
Index | EXOHI | 0.00 | 199.25 | 2~077.31 |
ENOLI | 0.00 | 99.62 | 1~038.65 | |
Myopic | EXOHI | 0.00 | 133.00 | 2~196.55 |
ENOLI | 0.00 | 66.50 | 1~098.27 | |
Exhaustive | EXOHI | 0.00 | 164.84 | 2~202.44 |
ENOLI | 0.00 | 82.42 | 1~101.22 | |
Round-robin | EXOHI | 0.00 | 155.27 | 2~238.81 |
ENOLI | 0.00 | 77.63 | 1~119.40 | |
Example 2 | ||||
Policy | System | Minimum | Mean | Maximum |
Index | EXOHI | 0.00 | 844.88 | 9~678.44 |
ENOLI | 0.00 | 281.63 | 3~226.15 | |
Myopic | EXOHI | 0.00 | 710.64 | 11~132.63 |
ENOLI | 0.00 | 236.88 | 3~710.88 | |
Exhaustive | EXOHI | 0.00 | 734.69 | 9~625.36 |
ENOLI | 0.00 | 244.90 | 3~208.45 | |
Round-robin | EXOHI | 0.00 | 734.12 | 9~863.72 |
ENOLI | 0.00 | 244.71 | 3~287.91 |
"
Example 1 | ||||
Policy | System | Minimum | Mean | Maximum |
Index | EXOHI | 0.00 | 199.25 | 2~077.31 |
ENOLI | 0.00 | 99.62 | 1~038.65 | |
Myopic | EXOHI | 0.00 | 133.00 | 2~196.55 |
ENOLI | 0.00 | 66.50 | 1~098.27 | |
Exhaustive | EXOHI | 0.00 | 164.84 | 2~202.44 |
ENOLI | 0.00 | 82.42 | 1~101.22 | |
Round-robin | EXOHI | 0.00 | 155.27 | 2~238.81 |
ENOLI | 0.00 | 77.63 | 1~119.40 | |
Example 2 | ||||
Policy | System | Minimum | Mean | Maximum |
Index | EXOHI | 0.00 | 3.74 | 7.50 |
ENOLI | 0.00 | 1.25 | 2.50 | |
Myopic | EXOHI | 0.00 | 1.69 | 7.50 |
ENOLI | 0.00 | 1.06 | 2.50 | |
Exhaustive | EXOHI | 0.00 | 3.02 | 7.50 |
ENOLI | 0.00 | 1.01 | 2.50 | |
Round-robin | EXOHI | 0.00 | 2.63 | 7.50 |
ENOLI | 0.00 | 1.08 | 2.50 |
1 | LI L Y, LIU F X, LONG G Z, et al. Performance analysis and optimal allocation of layered defense M/M/N queuing systems. Mathematical Problems in Engineering, 2016, 5, 1- 21. |
2 |
LI L Y, LIU F X, LONG G Z, et al. Modified particle swarm optimization for BMDS interceptor resource planning. Applied Intelligence, 2016, 44 (3): 471- 488.
doi: 10.1007/s10489-015-0711-9 |
3 |
BRACKEN J. Layered defense of deceptively based ICBMs. Naval Research Logistics Quarterly, 1984, 31 (4): 653- 670.
doi: 10.1002/nav.3800310414 |
4 | DAVIS M T, ROBBINS M J, LUNDAY B J. Approximate dynamic programming for missile defense interceptor fire control. European Journal of Operational Research, 2017, 259 (3): 873- 886. |
5 | BLAHA G A, PENDERGRAFT T C, RILEY F A. Exploring architectural options for a space based missile defense layer. Proc. of the AIAA SPACE 2007 Conference and Exposition, 2007: 1-10. |
6 | HAN C Y, LUNDAY B J, ROBBINS M J. A game theoretic model for the optimal location of integrated air defense system missile batteries. INFORMS Journal on Computing, 2017, 28 (3): 405- 416. |
7 |
LI L Y, LIU F X, LONG G Z, et al. Intercepts allocation for layered defense. Journal of Systems Engineering and Electronics, 2016, 27 (3): 602- 611.
doi: 10.1109/JSEE.2016.00064 |
8 |
BROWN G, CARLYLE M, DIEHL D, et al. A two-sided optimization for theater ballistic missile defense. Operations Research, 2005, 53 (5): 745- 763.
doi: 10.1287/opre.1050.0231 |
9 | PARK S. Systematic analysis of framing bias in missile defense: implications toward visualization design. European Journal of Operational Research, 2007, 182 (3): 1383- 1398. |
10 |
ENDER T, LEURCK R F, WEAVER B, et al. Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation. IEEE Systems Journal, 2010, 4 (2): 156- 166.
doi: 10.1109/JSYST.2010.2045541 |
11 | LI L Y, CAO J Z, MEI Y Y. Reduction and normal forms for a delayed reaction-diffusion differential system with B-T singularity. Advances in Difference Equations, 2019, 204, 1- 15. |
12 |
KARASAKAL O. Air defense missile-target allocation models for a naval task group. Computers and Operations Research, 2008, 35 (6): 1759- 1770.
doi: 10.1016/j.cor.2006.09.011 |
13 | PARNELL G S, METZGER R E, MERRICK J, et al. Multiobjective decision analysis of theater missile defense architectures. Systems Engineering, 2015, 4 (1): 24- 34. |
14 | BOARDMAN N T, LUNDAY B J, ROBBINS M J. Heterogeneous surface-to-air missile defense battery location: a game theoretic approach. Journal of Heuristics, 2017, 23 (6): 1- 31. |
15 |
GORFINKEL M. A decision-theory approach to missile defense. Operations Research, 1963, 11 (2): 199- 209.
doi: 10.1287/opre.11.2.199 |
16 | OGBU F A. Simulated annealing (SA) and optimization: modern algorithms with VLSI, optimal design, and missile defense applications. Journal of the Operational Research Society, 1991, 42 (1): 97- 98. |
17 | GITTINS J C. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society, 1979, 41 (2): 148- 177. |
18 | GITTINS J C. Multi-armed bandit allocation indices. New Jersey: Wiley, 1979. |
19 |
GLAZEBROOK K D, RUIZ-HERNANDEZ D, KIRKBRIDE C. Some indexable families of restless bandit problems. Advances in Applied Probability, 2006, 38 (3): 643- 672.
doi: 10.1239/aap/1158684996 |
20 | AGRAWAL R, HEGDE M V, TENEKETZIS D. Asymptotically efficient adaptive allocation rules for the multiarmed bandit problem with switching cost. IEEE Trans. on Automatic Control, 1988, 33(10): 899-906. |
21 | WHITTLE P. Multi-armed bandits and the Gittins index. Journal of the Royal Statistical Society, 1980, 42 (2): 143- 149. |
22 |
WHITTLE P. Restless bandits: activity allocation in a changing world. Journal of Applied Probability, 1988, 25 (A): 287- 298.
doi: 10.2307/3214163 |
23 | WHITTLE P. Optimal control: basics and beyond. Academic Pediatrics, 1996, 10 (5): 289- 292. |
24 | ANDERSON C M. Ambiguity aversion in multi-armed bandit problems. Theory and Decision, 2012, 72 (1): 15- 33. |
25 |
GU M Z, LU X W. The expected asymptotical ratio for preemptive stochastic online problem. Theoretical Computer Science, 2013, 495, 96- 112.
doi: 10.1016/j.tcs.2013.05.035 |
26 | SONIN I M. A generalized Gittins index for a Markov chain and its recursive calculation. Statistics & Probability Letters, 2008, 78 (12): 1526- 1533. |
27 | KUMAR U D. Optimal selection of obsolescence mitigation strategies using a restless bandit model. European Journal of Operational Research, 2010, 200 (1): 170- 180. |
28 |
SI P, JI H, YU F R. Optimal network selection in heterogeneous wireless multimedia networks. Wireless Networks, 2010, 16 (5): 1277- 1288.
doi: 10.1007/s11276-009-0202-1 |
29 |
GLAZEBROOK K D, GREATRIX S. On transforming an index for generalized bandit problems. Journal of Applied Probability, 1995, 32 (1): 168- 182.
doi: 10.2307/3214927 |
30 |
GLAZEBROOK K D, WASHBURN A. Shoot-look-shoot: a review and extension. Operations Research, 2004, 52 (3): 454- 463.
doi: 10.1287/opre.1030.0086 |
31 |
GLAZEBROOK K D, KIRKBRIDE C, MITCHELL H M, et al. Index policies for shooting problems. Operations Research, 2007, 55 (4): 769- 781.
doi: 10.1287/opre.1070.0444 |
32 | LI L Y, LIU F X, ZHAO L F, et al. Optimality analysis of index policy for offense-defense shooting process. Acta Armamentarii, 2015, 36 (5): 953- 960. |
33 | GAVER D P, JACOBS P A. Suppression of enemy air defense (SEAD) as an information duel. Naval Research Logistics, 1998, 49 (8): 723- 742. |
34 | NASH P. A generalized bandit problem,. Journal of the Royal Statistical Society, 1980, 42 (2): 165- 169. |
35 |
FAY N A, WALRAND J C. On approximately optimal index strategies for generalized arm problems. Journal of Applied Probability, 1991, 28 (3): 602- 612.
doi: 10.2307/3214495 |
36 |
GLAZEBROOK K D, GREATRIX S. On transforming an index for generalized bandit problems. Journal of Applied Probability, 1995, 32 (1): 168- 182.
doi: 10.2307/3214927 |
37 |
CROSBIE J H, GLAZEBROOK K D. Evaluating policies for generalized bandits via a notion of duality. Journal of Applied Probability, 2000, 37 (2): 540- 546.
doi: 10.1239/jap/1014842557 |
38 |
CROSBIE J H, GLAZEBROOK K D. Index policies and a novel performance space structure for a class of generalized branching bandit problems. Mathematics of Operations Research, 2000, 25 (2): 281- 297.
doi: 10.1287/moor.25.2.281.12229 |
39 |
DUMITRIU I, TETALI P, WINKLER P. On playing golf with two balls. SIAM Journal on Discrete Mathematics, 2003, 16 (4): 604- 615.
doi: 10.1137/S0895480102408341 |
40 | PUTERMAN M L. Markov decision processes: discrete stochastic dynamic programming. New Jersey: Wiley, 1994. |
41 | GLAZEBROOK K D, KIRKBRIDE C, MITCHELL H M, et al. Index policies for shooting problems. Operations Research, 2007, 55 (4): 760- 781. |
42 | WANG K H, CHEN L, LIU Q, et al. On optimality of myopic sensing policy with imperfect sensing in multi-channel opportunistic access. IEEE Trans. on Communications, 2013, 61(9): 3854-3862. |
43 | CETINKAYA S, PARLARB M. Optimal myopic policy for a stochastic inventory problem with fixed and proportional backorder costs. European Journal of Operational Research, 1998, 110 (1): 20- 41. |
44 |
LEE Y. Modified myopic policy with collision avoidance for opportunistic spectrum access. Electronics Letters, 2010, 46 (12): 871- 872.
doi: 10.1049/el.2010.0424 |
45 |
LIU Z, TOWSLEY D. Optimality of the round-robin routing policy. Journal of Applied Probability, 1994, 31 (2): 466- 475.
doi: 10.2307/3215039 |
46 | PANDEY D, VANDANA. Improved round robin policy mathematical approach. International Journal on Computer Science & Engineering, 2010, 2 (4): 948- 954. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||