Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1357-1371.doi: 10.23919/JSEE.2023.000168
• • 上一篇
收稿日期:
2022-08-16
接受日期:
2023-12-13
出版日期:
2024-12-18
发布日期:
2025-01-14
Zihang FENG1(), Liping YAN1,*(), Jinglan BAI1(), Yuanqing XIA1(), Bo XIAO2()
Received:
2022-08-16
Accepted:
2023-12-13
Online:
2024-12-18
Published:
2025-01-14
Contact:
Liping YAN
E-mail:3120185474@bit.edu.cn;ylp@bit.edu.cn;baijinglann@126.com;xia_yuanqing@bit.edu.cn;xiaobo@bupt.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1357-1371.
Zihang FENG, Liping YAN, Jinglan BAI, Yuanqing XIA, Bo XIAO. A content-aware correlation filter with multi-feature fusion for RGB-T tracking[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1357-1371.
"
PR/SR | ECO | SGT | MDNet | SRDCF | OursFF | OursCA | OursCAFF |
No occlusion (NO) | 87.7/64.3 | 82.4/50.7 | 83.6/58.8 | 78.4/57.5 | 84.8/61.0 | 82.9/57.1 | 86.2/61.4 |
Partial occlusion (PO) | 72.2/52.5 | 75.4/48.3 | 75.6/51.5 | 65.7/47.5 | 76.2/52.0 | 76.2/52.9 | 78.4/53.4 |
Heavy occlusion (HO) | 58.3/41.3 | 53.1/34.1 | 58.8/39.8 | 51.2/35.5 | 52.5/36.6 | 55.1/37.3 | 58.4/40.0 |
Low illumination (LI) | 66.6/45.6 | 71.6/44.7 | 67.0/45.5 | 54.8/38.7 | 74.3/48.0 | 72.4/48.4 | 76.5/49.9 |
Low resolution (LR) | 64.1/38.1 | 65.8/37.5 | 66.1/42.9 | 48.9/29.3 | 67.4/39.3 | 65.3/39.4 | 68.3/37.5 |
Thermal crossover (TC) | 82.1/58.8 | 64.9/40.7 | 71.8/47.5 | 60.3/42.3 | 65.7/48.1 | 61.5/42.7 | 68.2/48.8 |
Deformation (DEF) | 61.2/45.0 | 65.3/45.9 | 66.2/47.4 | 55.2/40.0 | 60.8/45.5 | 63.6/44.5 | 63.4/46.6 |
Fast motion (FM) | 58.2/39.2 | 58.0/33.1 | 58.1/35.5 | 54.0/34.5 | 59.0/39.0 | 58.3/37.6 | 64.4/41.3 |
Scale variation (SV) | 74.5/55.4 | 67.4/41.7 | 73.0/50.0 | 70.7/51.4 | 70.8/51.0 | 71.5/50.1 | 74.6/53.7 |
Motion blur (MB) | 67.8/49.9 | 58.6/39.6 | 60.4/42.5 | 51.9/38.4 | 57.5/40.8 | 56.8/38.9 | 64.7/44.5 |
Camera moving (CM) | 61.7/45.0 | 59.0/40.7 | 60.6/43.1 | 55.6/39.6 | 61.2/43.4 | 61.2/43.1 | 66.3/46.7 |
Background clutter (BC) | 52.9/35.2 | 58.6/35.5 | 61.0/40.6 | 46.4/30.9 | 60.5/38.7 | 59.2/39.2 | 60.9/37.3 |
All videos | 69.0/49.8 | 67.5/43.0 | 70.2/48.0 | 61.9/44.2 | 68.0/47.2 | 68.7/47.3 | 71.5/49.2 |
1 |
ZHOU L, WEI S Y, CUI Z M, et al Lira-YOLO: a lightweight model for ship detection in radar images. Journal of Systems Engineering and Electronics, 2020, 31 (5): 950- 956.
doi: 10.23919/JSEE.2020.000063 |
2 |
YE T, ZHAO Z Y, ZHANG J, et al Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network. Journal of Systems Engineering and Electronics, 2021, 32 (4): 841- 853.
doi: 10.23919/JSEE.2021.000073 |
3 |
HAN J, LI W X, FENG K, et al Vision-based aerial image mosaicking algorithm with object detection. Journal of Systems Engineering and Electronics, 2022, 33 (2): 259- 268.
doi: 10.23919/JSEE.2022.000026 |
4 |
KERIM A, CELIKCAN U, ERDEM E, et al Using synthetic data for person tracking under adverse weather conditions. Image and Vision Computing, 2021, 111, 104187.
doi: 10.1016/j.imavis.2021.104187 |
5 | SCHNELLE S R, CHAN A L. Enhanced target tracking through infrared-visible image fusion. Proc. of the 14th International Conference on Information Fusion, 2011: 1−8. |
6 |
GADE R, MOESLUND T B Thermal cameras and applications: a survey. Machine Vision and Applications, 2014, 25 (1): 245- 262.
doi: 10.1007/s00138-013-0570-5 |
7 | LI C L, XUE W L, JIA Y Q, et al LasHeR: a large-scale high-diversity benchmark for RGBT tracking. IEEE Trans. on Image Processing, 2021, 31, 392- 404. |
8 | ZHANG P Y, ZHAO J, WANG D, et al. Visible-thermal UAV tracking: a large-scale benchmark and new baseline. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8876−8885. |
9 |
ZHANG X C, YE P, LEUNG H, et al Object fusion tracking based on visible and infrared images: a comprehensive review. Information Fusion, 2020, 63 (1): 166- 187.
doi: 10.1016/j.inffus.2020.05.002 |
10 |
WANG J, QIN C X, ZHANG X F, et al A multi-source image fusion algorithm based on gradient regularized convolution sparse representation. Journal of Systems Engineering and Electronics, 2020, 31 (3): 447- 459.
doi: 10.23919/JSEE.2020.000027 |
11 |
CHEN C, XIN J X, WANG Y, et al A semisupervised classification approach for multidomain networks with domain selection. IEEE Trans. on Neural Networks and Learning Systems, 2019, 30 (1): 269- 283.
doi: 10.1109/TNNLS.2018.2837166 |
12 | LAN X Y, MA A J, YUEN P C. Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1194−1201. |
13 |
LI C L, CHENG H, HU S Y, et al Learning collaborative sparse representation for grayscale-thermal tracking. IEEE Trans. on Image Processing, 2016, 25 (12): 5743- 5756.
doi: 10.1109/TIP.2016.2614135 |
14 | LAN X Y, YE M, ZHANG S P, et al. Robust collaborative discriminative learning for RGB-infrared tracking. Proc. of the AAAI Conference on Artificial Intelligence, 2018: 7008−7015. |
15 |
PENG J C, ZHAO H T, HU Z W Dynamic fusion network for RGBT tracking. IEEE Trans. on Intelligent Transportation Systems, 2023, 24 (4): 3822- 3832.
doi: 10.1109/TITS.2022.3229830 |
16 | ZHU Y B, LI C L, TANG J, et al RGBT tracking by trident fusion network. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 32 (2): 579- 592. |
17 | WANG X, SHU X J, ZHANG S L, et al. MFGNet: dynamic modality-aware filter generation for RGB-T tracking. IEEE Trans. on Multimedia, 2022, 25: 4335−4348. |
18 | ZHANG T L, LIU X R, ZHANG Q, et al SiamCDA: complementarity-and distractor-aware RGB-T tracking based on siamese network. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 32 (3): 1403- 1417. |
19 | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544−2550. |
20 | DANELLJAN M, HAGER G, SHAHBAZ KHAN F , et al. Learning spatially regularized correlation filters for visual tracking. Proc. of the IEEE International Conference on Computer Vision, 2015: 4310−4318. |
21 |
LI X, LIU Q, HE Z Y, et al A multi-view model for visual tracking via correlation filters. Knowledge-Based Systems, 2016, 113, 88- 99.
doi: 10.1016/j.knosys.2016.09.014 |
22 | YUN X, SUN Y J, YANG X X, et al Discriminative fusion correlation learning for visible and infrared tracking. Mathematical Problems in Engineering, 2019, 2019, 2437521. |
23 | WANG Y L, LI C L, TANG J. Learning soft-consistent correlation filters for RBG-T object tracking. Proc. of the Chinese Conference on Pattern Recognition and Computer Vision, 2018: 295−306. |
24 |
ZHAI S L, SHAO P P, LIANG X Y, et al Fast RGB-T tracking via cross-modal correlation filters. Neurocomputing, 2019, 334, 172- 181.
doi: 10.1016/j.neucom.2019.01.022 |
25 | QIN Y, LU H C, XU Y Q, et al. Saliency detection via cellular automata. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 110−119. |
26 |
FENG W, HAN R Z, GUO Q, et al Dynamic saliency-aware regularization for correlation filter-based object tracking. IEEE Trans. on Image Processing, 2019, 28 (7): 3232- 3245.
doi: 10.1109/TIP.2019.2895411 |
27 | ZHAI Y, SHAH M. Visual attention detection in video sequences using spatiotemporal cues. Proc. of the 14th Annual ACM International Conference on Multimedia, 2006: 815−824. |
28 |
MA J L, ZHOU Z Q, WANG B, et al Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Physics and Technology, 2017, 82, 8- 17.
doi: 10.1016/j.infrared.2017.02.005 |
29 | LI Y, ZHU J K. A scale adaptive kernel correlation filter tracker with feature integration. Proc. of the European Conference on Computer Vision, 2014: 254−265. |
30 | LI C L, ZHAO N, LU Y J, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking. Proc. of the ACM Multimedia Conference, 2017: 1856−1864. |
31 |
LI C L, LIANG X Y, LU Y J, et al RGB-T object tracking: benchmark and baseline. Pattern Recognition, 2019, 96, 106977.
doi: 10.1016/j.patcog.2019.106977 |
32 | KRISTAN M, MATAS J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results. Proc. of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 2206−2241. |
33 |
LIU H P, SUN F C Fusion tracking in color and infrared images using joint sparse representation. Science China: Information Sciences, 2012, 55 (3): 590- 599.
doi: 10.1007/s11432-011-4536-9 |
34 | WU Y, BLASCH E, CHEN G S, et al. Multiple source data fusion via sparse representation for robust visual tracking. Proc. of the International Conference on Information Fusion, 2011: 1−8. |
35 | LI C L, ZHU C L, HUANG Y, et al. Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking. Proc. of the European Conference on Computer Vision, 2018: 831−847. |
36 | GALOOGAHI H, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking. Proc. of the IEEE International Conference on Computer Vision, 2017: 1144−1152. |
37 | DANELLJAN M, BHAT G, SHAHBAZ K F, et al. ECO: efficient convolution operators for tracking. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6638−6646. |
38 | NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293−4302. |
39 | SONG Y B, MA C, GONG L J, et al. CREST: convolutional residual learning for visual tracking. Proc. of the IEEE International Conference on Computer Vision, 2017: 2574−2583. |
40 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking. Proc. of the European Conference on Computer Vision Workshops, 2016: 850−865. |
41 | KIM H U, LEE D Y, SIM J Y, et al. SOWP: spatially ordered and weighted patch descriptor for visual tracking. Proc. of the IEEE International Conference on Computer Vision, 2015: 3011−3019. |
42 | VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End-to-end representation learning for correlation filter based tracking. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5000−5008. |
43 | JUNG I, SON J, BAEK M, et al. Real-time MDNet. Proc. of the European Conference on Computer Vision, 2018: 83−98. |
44 | ZHU Y B, LI C L, TANG J, et al Quality-aware feature aggregation network for robust RGBT tracking. IEEE Trans. on Intelligent Vehicles, 2020, 6 (1): 121- 130. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||