Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1337-1356.doi: 10.23919/JSEE.2022.000155
• •
收稿日期:
2022-01-10
出版日期:
2024-12-18
发布日期:
2025-01-14
Yuxiang XIE1,*(), Quanzhi GONG1(), Xidao LUAN2(), Jie YAN1(), Jiahui ZHANG1()
Received:
2022-01-10
Online:
2024-12-18
Published:
2025-01-14
Contact:
Yuxiang XIE
E-mail:yxxie@nudt.edu.cn;Charles_g27@qq.com;xidaoluan@ccsu.cn;yjierrr@163.com;100634004@qq.com
About author:
GONG Quanzhi
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1337-1356.
Yuxiang XIE, Quanzhi GONG, Xidao LUAN, Jie YAN, Jiahui ZHANG. A survey of fine-grained visual categorization based on deep learning[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1337-1356.
"
Dataset | Number | Type | Year | Theme | Annotation |
Oxford Flower [ | 8 189 | 103 | 2008 | Flowers | Texts |
CUB-200-2011 [ | 11 788 | 200 | 2011 | Birds | BBox/Part/AL/Texts |
Stanford Dogs [ | 20 580 | 120 | 2011 | Dogs | BBox |
Stanford Cars [ | 16 185 | 196 | 2013 | Cars | BBox |
FGVC Aircraft [ | 10 000 | 100 | 2013 | Airplanes | BBox/HL |
VegFru [ | 160 731 | 292 | 2017 | Vegetable/fruit | HL |
iNat2017 [ | 857 877 | 5 089 | 2017 | Animals/plants | BBox/HL |
RPC [ | 83 739 | 200 | 2019 | Products | BBox/HL |
"
Method | Year | Backbone | Annotation | Accuracy | ||
CUB | Cars | Air | ||||
S3Ns [ | 2019 | Resnet-50 | / | 88.5 | 94.7 | 92.8 |
LCA-CNN [ | 2019 | Inception V3 | / | 90.8 | − | 92.1 |
DB-GCE [ | 2020 | ResNet-50 | / | 88.6 | 94.9 | 93.5 |
GCL [ | 2020 | ResNet-50 | / | 88.3 | 94 | 93.2 |
Bi-Modal PMA [ | 2020 | ResNet-50 | Text | 88.7 | 93.1 | 90.8 |
DF-GMM [ | 2020 | ResNet-50 | / | 88.8 | 94.8 | 93.8 |
LDOP [ | 2020 | ResNet-50 | / | 88.9 | 94.2 | 92.3 |
FDL [ | 2020 | DenseNet161 | / | 89.1 | 94.0 | 91.3 |
MMAL-Net [ | 2020 | ResNet-50 | / | 89.6 | 95 | 94.7 |
PMG [ | 2020 | ResNet-50 | / | 89.6 | 95.1 | 93.4 |
API-Net [ | 2020 | DenseNet-161 | / | 90 | 95.3 | 93.9 |
CAP [ | 2021 | ResNet-50 | / | − | 94.9 | 94.9 |
CAL [ | 2021 | ResNet-101 | / | 90.6 | 95.5 | 94.2 |
CCFR [ | 2021 | ResNet-50 | / | 91.1 | 95.5 | 94.1 |
AFTrans [ | 2021 | ViT | / | 91.5 | 95.0 | − |
TransFG [ | 2021 | ViT | / | 91.7 | 94.8 | − |
1 | WELINDER P, BRANSON S, MITA T, et al Caltech-UCSD Birds 200. Pasadena: California Institute of Technology, 2010, CNS- TR-2010-001. |
2 |
YAO B P, BRADSKI G, LI F F A codebook-free and annotation-free approach for fine-grained image categorization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2012, 3466- 3473.
doi: 10.1109/CVPR.2012.6248088 |
3 |
ZHANG N, DONAHUE J, GIRSHICK R, et al Part-based R-CNNs for fine-grained category detection. Proc. of the European Conference on Computer Vision, 2014, 834- 849.
doi: 10.1007/978-3-319-10590-1_54 |
4 |
LIN T Y, ROYCHOWDHURY A, MAJI S Bilinear convolutional neural networks for fine-grained visual recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40 (6): 1309- 1322.
doi: 10.1109/TPAMI.2017.2723400 |
5 |
FU J L, ZHENG H L, MEI T Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4476- 4484.
doi: 10.1109/CVPR.2017.476 |
6 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale. https://arxiv.org/abs/2010.11929. |
7 |
NILSBACK M E, ZISSERMAN A Automated flower classification over a large number of classes. Proc. of the 6th Indian Conference on Computer Vision, Graphics & Image Processing, 2008, 722- 729.
doi: 10.1109/ICVGIP.2008.47 |
8 | WAH C , BRANSON S, WELINDER P, et al The Caltech-UCSD Birds-200-2011 Dataset. Pasadena: California Institute of Technology, 2011, CNS- TR-2011-001. |
9 | KHOSLA A, JAYADEVAPRAKASH N, YAO B P, et al. Novel dataset for fine-grained image categorization. https://people.csail.mit.edu/khosla/papers/fgvc2011.pdf. |
10 |
KRAUSE J, STARK M, DENG J, et al 3D Object representations for fine-grained categorization. Proc. of the 4th International IEEE Workshop on 3D Representation and Recognition, 2013, 554- 561.
doi: 10.1109/ICCVW.2013.77 |
11 | MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft. https://arxiv.org/abs/1306.5151. |
12 |
HOU S H, FENG Y S, WANG Z L VegFru: a domain-specific dataset for fine-grained visual categorization. Proc. of the IEEE International Conference on Computer Vision, 2017, 541- 549.
doi: 10.1109/ICCV.2017.66 |
13 |
HORN G, AODHA O, SONG Y, et al The iNaturalist species classification and detection dataset. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 8769- 8778.
doi: 10.1109/CVPR.2018.00914 |
14 | WEI X S, CUI Q, YANG L, et al. RPC: a large-scale retail product checkout dataset. https://arxiv.org/abs/1901.07249. |
15 |
LECUN Y, BOTTOU L, BENGIO Y, et al Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791 |
16 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
17 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556. |
18 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al Rethinking the inception architecture for computer vision. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2818- 2826.
doi: 10.1109/CVPR.2016.308 |
19 |
HE K M, ZHANG X Y, REN S Q, et al Deep residual learning for image recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770- 778.
doi: 10.1109/CVPR.2016.90 |
20 |
HUANG G, LIU Z, MAATEN L, et al Densely connected convolutional networks. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 2261- 2269.
doi: 10.1109/CVPR.2017.243 |
21 |
HU J, SHEN L, SUN G Squeeze-and-excitation networks. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 7132- 7141.
doi: 10.1109/CVPR.2018.00745 |
22 | SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks. https://arxiv.org/abs/1505.00387. |
23 | LARSSON G, MAIRE M, SHAKHNAROVICH G. FractalNet: ultra-deep neural networks without residuals. https://arxiv.org/abs/1605.07618. |
24 |
GIRSHICK R, DONAHUE J, DARRELL T, et al Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 580- 587.
doi: 10.1109/CVPR.2014.81 |
25 |
GIRSHICK R Fast R-CNN. Proc. of the IEEE International Conference on Computer Vision, 2015, 1440- 1448.
doi: 10.1109/ICCV.2015.169 |
26 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
27 | HE X T, PENG Y X, ZHAO J J Fast fine-grained image classification via weakly supervised discriminative localization. IEEE Trans. on Circuits and Systems for Video Technology, 2018, 29 (5): 1394- 1407. |
28 |
LIU W, ANGUELOV D, ERHAN D, et al SSD: single shot multiBox detector. Proc. of the European Conference on Computer Vision, 2016, 21- 37.
doi: 10.1007/978-3-319-46448-0_2 |
29 |
REDMON J, DIVVALA S, GIRSHICK R, et al You only look once: unified, real-time object detection. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 779- 788.
doi: 10.1109/CVPR.2016.91 |
30 |
REDMON J, FARHADI A YOLO9000: better, faster, stronger. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 6517- 6525.
doi: 10.1109/CVPR.2017.690 |
31 | REDMON J, FARHADI A. YOLOv3: an incremental improvement. https://arxiv.org/abs/1804.02767. |
32 | BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection. https://arxiv.org/abs/2004.10934. |
33 | YAN Z X, HOU Z Q, XIONG L, et al Fine-grained image classification based on the fusion of YOLOv3 and bilinear feature. Journal of Image and Graphics, 2021, 26 (4): 847- 856. |
34 | BRANSON S, VAN HORN G, BELONGIE S, et al. Bird species categorization using pose normalized deep convolutional nets. https://arxiv.org/abs/1406.5952. |
35 |
LIN D, SHEN X Y, LU C W, et al Deep LAC: deep localization, alignment and classification for fine-grained recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1666- 1674.
doi: 10.1109/CVPR.2015.7298775 |
36 |
YU C J, ZHAO X Y, ZHENG Q, et al Hierarchical bilinear pooling for fine-grained visual recognition. Proc. of the European Conference on Computer Vision, 2018, 595- 610.
doi: 10.1007/978-3-030-01270-0_35 |
37 |
ZHENG H L, FU J L, ZHA Z J, et al Learning deep bilinear transformation for fine-grained image representation. Proc. of the 33rd International Conference on Neural Information Processing Systems, 2019, 385, 4277- 4286.
doi: 10.5555/3454287.3454672 |
38 |
KONG S, FOWLKES C Low-rank bilinear pooling for fine-grained classification. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 7025- 7034.
doi: 10.1109/CVPR.2017.743 |
39 |
ZHANG Y B, JIA K, WANG Z X, et al Part-aware fine-grained object categorization using weakly supervised part detection network. IEEE Trans. on Multimedia, 2020, 22 (5): 1345- 1357.
doi: 10.1109/TMM.2019.2939747 |
40 |
ZHANG C J, LIANG C, LI L, et al Fine-grained image classification via low-rank sparse coding with general and class-specific codebooks. IEEE Trans. on Neural Networks and Learning Systems, 2017, 28 (7): 1550- 1559.
doi: 10.1109/TNNLS.2016.2545112 |
41 | LI X L, MONGA V. Group based deep shared feature learning for fine-grained image classification. https://arxiv.org/abs/2004.01817. |
42 | HU J, CHEN J N, LIU S, et al. TransFG: a transformer architecture for fine-grained recognition. https://arxiv.org/abs/2103.07976. |
43 | WANG J, YU X H, GAO Y S. Feature fusion vision transformer for fine-grained visual categorization. https://arxiv.org/abs/2107.02341. |
44 |
LIANG J Y, GUO J L, LIU X, et al Fine-grained image classification with Gaussian mixture layer. IEEE Access, 2018, 6, 53356- 53367.
doi: 10.1109/ACCESS.2018.2871621 |
45 |
LUO W, YANG X T, MO X J, et al Cross-X learning for fine-grained visual categorization. Proc. of the IEEE/CVF International Conference on Computer Vision, 2019, 8241- 8250.
doi: 10.1109/ICCV.2019.00833 |
46 |
MING S, YUAN Y C, ZHOU F, et al Multi-attention multi-class constraint for fine-grained image recognition. Proc. of the European Conference on Computer Vision, 2018, 834- 850.
doi: 10.1007/978-3-030-01270-0_49 |
47 |
ZHENG X T, QI L, REN Y T, et al Fine-grained visual categorization by localizing object parts with single image. IEEE Trans. on Multimedia, 2020, 23, 1187- 1199.
doi: 10.1109/TMM.2020.2993960 |
48 | BEHERA A, WHARTON Z, HEWAGE P, et al. Context-aware attentional pooling (CAP) for fine-grained visual classification. https://arxiv.org/abs/2101.06635. |
49 |
ZHUANG P Q, WANG Y L, QIAO Y Learning attentive pairwise interaction for fine-grained classification. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 13130- 13137.
doi: 10.1609/aaai.v34i07.7016 |
50 |
GAO Y, HAN X T, WANG X, et al Channel interaction networks for fine-grained image categorization. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 10818- 10825.
doi: 10.1609/aaai.v34i07.6712 |
51 |
WANG Z H, WANG S J, LI H J, et al Graph-propagation based correlation learning for weakly supervised fine-grained image classification. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 12289- 12296.
doi: 10.1609/aaai.v34i07.6912 |
52 |
SUN G L, CHOLAKKAL H, KHAN S, et al Fine-grained recognition: accounting for subtle differences between similar classes. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 12047- 12054.
doi: 10.1609/aaai.v34i07.6882 |
53 |
RAO Y M, CHEN G Y, LU J W, et al Counterfactual attention learning for fine-grained visual categorization and re-identification. Proc. of the IEEE/CVF International Conference on Computer Vision, 2021, 1025- 1034.
doi: 10.1109/ICCV48922.2021.00106 |
54 |
CHANG D L, DING Y F, XIE J Y, et al The devil is in the channels: mutual-channel loss for fine-grained image classification. IEEE Trans. on Image Processing, 2020, 29, 4683- 4695.
doi: 10.1109/TIP.2020.2973812 |
55 |
GE Z Y, MCCOOL C, SANDERSON C, et al Subset feature learning for fine-grained category classification. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, 46- 52.
doi: 10.1109/CVPRW.2015.7301271 |
56 | GE Z Y, BEWLEY A, MCCOOL C, et al. Fine-grained classification via mixture of deep convolutional neural networks. Proc. of the IEEE Winter Conference on Applications of Computer Vision, 2016. DOI: 10.1109/WACV.2016.7477700. |
57 | WANG Z H, WANG X X, WANG G. Learning fine-grained features via a CNN tree for large-scale classification. https://arxiv.org/abs/1511.04534. |
58 |
ZHANG X F, ZHOU F, LIN Y Q, et al Embedding label structures for fine-grained feature representation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 1114- 1123.
doi: 10.1109/CVPR.2016.126 |
59 | JI R Y, WEN L Y, ZHANG L B, et al. Attention convolutional binary neural tree for fine-grained visual categorization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10465–10474. |
60 | SERMANET P, FROME A, REAL E. Attention for fine-grained categorization. https://arxiv.org/abs/1412.7054. |
61 |
ZHAO B, WU X, FENG J S, et al Diversified visual attention networks for fine-grained object classification. IEEE Trans. on Multimedia, 2017, 19 (6): 1245- 1256.
doi: 10.1109/TMM.2017.2648498 |
62 |
LEI C X, JIANG L F, JI J S, et al Weakly supervised learning of object-part attention model for fine-grained image classification. Proc. of the IEEE 18th International Conference on Communication Technology, 2018, 1222- 1226.
doi: 10.1109/ICCT.2018.8600125 |
63 |
ZHANG L B, HUANG S L, LIU W, et al Learning a mixture of granularity-specific experts for fine-grained categorization. Proc. of the IEEE/CVF International Conference on Computer Vision, 2019, 8331- 8340.
doi: 10.1109/ICCV.2019.00842 |
64 |
ZHANG F, LI M, ZHAI G S, et al Multi-branch and multi-scale attention learning for fine-grained visual categorization. Proc. of the International Conference on Multimedia Modeling, 2021, 136- 147.
doi: 10.1007/978-3-030-67832-6_12 |
65 | WEI X S, XIE C W, WU J X. Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition. https://arxiv.org/abs/1605.06878. |
66 |
XIAO T J, XU Y C, YANG K Y, et al The application of two-level attention models in deep convolutional neural network for fine-grained image classification. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 842- 850.
doi: 10.1109/CVPR.2015.7298685 |
67 |
PENG Y X, HE X T, ZHAO J J Object-part attention model for fine-grained image classification. IEEE Trans. on Image Processing, 2018, 27 (3): 1487- 1500.
doi: 10.1109/TIP.2017.2774041 |
68 |
HE X T, PENG Y X Weakly supervised learning of part selection model with spatial constraints for fine-grained image classification. Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017, 4075- 4081.
doi: 10.1609/aaai.v31i1.11223 |
69 |
WANG Y M, MORARIU V, DAVIS L Learning a discriminative filter bank within a CNN for fine-grained recognition. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 4148- 4157.
doi: 10.1109/CVPR.2018.00436 |
70 |
WANG Z H, WANG S J, YANG S H, et al Weakly supervised fine-grained image classification via Guassian mixture model oriented discriminative learning. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 9746- 9755.
doi: 10.1109/CVPR42600.2020.00977 |
71 |
ZOU C, WANG R, CAO X C, et al Weighted focus-attention deep network for fine-grained image classification. Proc. of the IEEE International Conference on Big Data, 2019, 5116- 5125.
doi: 10.1109/BigData47090.2019.9006580 |
72 |
DING Y, ZHOU Y Z, ZHU Y, et al Selective sparse sampling for fine-grained image recognition. Proc. of the IEEE/CVF International Conference on Computer Vision, 2019, 6598- 6607.
doi: 10.1109/ICCV.2019.00670 |
73 |
DU R Y, CHANG D L, BHUNIA A K, et al Fine-grained visual classification via progressive multi-granularity training of Jigsaw patches. Proc. of the European Conference on Computer Vision, 2020, 153- 168.
doi: 10.1007/978-3-030-58565-5_10 |
74 |
LIU C B, XIE H T, ZHA Z J, et al Filtration and distillation: enhancing region attention for fine-grained visual categorization. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 11555- 11562.
doi: 10.1609/aaai.v34i07.6822 |
75 | LIU X, XIA T, WANG J, et al. Fully convolutional attention networks for fine-grained recognition. https://arxiv.org/abs/1603.06765. |
76 |
ZHU Y X, LI R C, YANG Y, et al Learning cascade attention for fine-grained image classification. Neural Networks, 2020, 122, 174- 182.
doi: 10.1016/j.neunet.2019.10.009 |
77 | GE W F, LIN X R, YU Y Z. Weakly supervised complementary parts models for fine-grained image classification from the bottom up. https://arxiv.org/abs/1903.02827. |
78 |
WAN C Q, WU Y, TIAN X M, et al Concentrated local part discovery with fine-grained part representation for person re-identification. IEEE Trans. on Multimedia, 2020, 22 (6): 1605- 1618.
doi: 10.1109/TMM.2019.2946486 |
79 |
LIN Z Q, JIA J D, GAO W L, et al Fine-grained visual categorization of butterfly specimens at sub-species level via a convolutional neural network with skip-connections. Neurocomputing, 2020, 384, 295- 313.
doi: 10.1016/j.neucom.2019.11.033 |
80 |
YANG Y D, WANG X F, ZHAO Q, et al Two-level attentions and grouping attention convolutional network for fine-grained image classification. Applied Sciences, 2019, 9 (9): 1939- 1954.
doi: 10.3390/app9091939 |
81 | YANG S K, LIU S, YANG C, et al. Re-rank coarse classification with local region enhanced features for fine-grained image recognition. https://arxiv.org/abs/2102.09875. |
82 |
LIU X D, WANG L L, HAN X G Transformer with peak suppression and knowledge guidance for fine-grained image recognition. Neurocomputing, 2022, 492, 137- 149.
doi: 10.1016/j.neucom.2022.04.037 |
83 |
ZHANG Y, CAO J, ZHANG L, et al A free lunch from ViT: adaptive attention multi-scale fusion transformer for fine-grained visual recognition. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2022, 3234- 3238.
doi: 10.1109/ICASSP43922.2022.9747591 |
84 |
HU Y Q, JIN X, ZHANG Y, et al RAMS-Trans: recurrent attention multi-scale transformer for fine-grained image recognition. Proc. of the 29th ACM International Conference on Multimedia, 2021, 4239- 4248.
doi: 10.1145/3474085.3475561 |
85 |
WANG D Q, SHEN Z Q, SHAO J, et al Multiple granularity descriptors for fine-grained categorization. Proc. of the IEEE International Conference on Computer Vision, 2015, 2399- 2406.
doi: 10.1109/ICCV.2015.276 |
86 |
ZHAO J J, PENG Y X, HE X T Attribute hierarchy based multi-task learning for fine-grained image classification. Neurocomputing, 2020, 395, 150- 159.
doi: 10.1016/j.neucom.2018.02.109 |
87 |
HE X T, PENG Y X Fine-grained image classification via combining vision and language. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 5994- 6002.
doi: 10.1109/CVPR.2017.775 |
88 |
SONG K T, WEI X S, SHU X B, et al Bi-modal progressive mask attention for fine-grained recognition. IEEE Trans. on Image Processing, 2020, 29, 7006- 7018.
doi: 10.1109/TIP.2020.2996736 |
89 |
MAFLA A, DEY S, BITEN A F, et al Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval. Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, 4023- 4033.
doi: 10.1109/WACV48630.2021.00407 |
90 | ZHANG C Y, KAESER C, VESOM G, et al. The iMet collection 2019 challenge dataset. https://arxiv.org/abs/1906.00901. |
91 | BEERY S, VAN HORN G, MAC AODHA O, et al. The iWildCam 2018 challenge dataset. https://arxiv.org/abs/1904.05986. |
92 | THAPA R, SNAVELY N, BELONGIE S, et al. The plant pathology 2020 Challenge Dataset to classify foliar disease of apples. https://arxiv.org/abs/2004.11958. |
93 | SU J C, MAJI S. The semi-supervised iNaturalist-Aves challenge at FGVC7 workshop. https://arxiv.org/abs/2103.06937. |
94 | BEERY S, AGARWAL A, COLE E, et al. The iWildCam 2021 competition dataset. https://arxiv.org/abs/2105.03494. |
95 | SU J C, MAJI S. The semi-supervised iNaturalist challenge at the FGVC8 workshop. https://arxiv.org/abs/2106.01364. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||