Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1084-1097.doi: 10.23919/JSEE.2023.000144
收稿日期:
2022-09-06
接受日期:
2023-10-12
出版日期:
2024-10-18
发布日期:
2024-11-06
Hongyong WANG1(), Ying SUO1,2(), Weibo DENG1,2(), Xiaochuan WU1,2(), Yang BAI1(), Xin ZHANG1,2,*()
Received:
2022-09-06
Accepted:
2023-10-12
Online:
2024-10-18
Published:
2024-11-06
Contact:
Xin ZHANG
E-mail:wanghongyong618@163.com;suoyingsing@126.com;dengweibo@hit.edu.cn;wxc@hit.edu.cn;hit_baiyang@163.com;zhangxinhit@hit.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1084-1097.
Hongyong WANG, Ying SUO, Weibo DENG, Xiaochuan WU, Yang BAI, Xin ZHANG. A frequency domain estimation and compensation method for system synchronization parameters of distributed-HFSWR[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1084-1097.
1 |
GILL E W, MA Y, HUANG W M Motion compensation for high-frequency surface wave radar on a floating platform. IET Radar, Sonar and Navigation, 2018, 12 (1): 37- 45.
doi: 10.1049/iet-rsn.2017.0220 |
2 |
ZHU Y P, WEI Y S, TONG P First order sea clutter cross section for bistatic shipborne HFSWR. Journal of Systems Engineering and Electronics, 2017, 28 (4): 681- 689.
doi: 10.21629/JSEE.2017.04.07 |
3 |
MARESCA S, BRACA P, HORSTMANN J, et al Maritime surveillance using multiple high-frequency surface-wave radars. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (8): 5056- 5071.
doi: 10.1109/TGRS.2013.2286741 |
4 |
BRACA P, MARESCA S, GRASSO R, et al Maritime surveillance with multiple over-the-horizon HFSW radars: an overview of recent experimentation. IEEE Aerospace and Electronic Systems Magazine, 2015, 30 (12): 4- 18.
doi: 10.1109/MAES.2015.150004 |
5 |
ZHAO Z X, WAN X R, ZHANG D L, et al An experimental study of HF passive bistatic radar via hybrid sky-surface wave mode. IEEE Trans. on Antennas and Propagation, 2013, 61 (1): 415- 424.
doi: 10.1109/TAP.2012.2213062 |
6 |
YANG L Q, FAN J M, GUO L X, et al Simulation analysis and experimental study on the echo characteristics of high-frequency hybrid sky-surface wave propagation mode. IEEE Trans. on Antennas and Propagation, 2018, 66 (9): 4821- 4831.
doi: 10.1109/TAP.2018.2842254 |
7 |
ZHANG J Z, ZHANG X, DENG W B, et al Information geometric means-based STAP for nonhomogeneous clutter suppression in high frequency hybrid sky-surface wave radar. IEEE Sensors Journal, 2021, 21 (2): 1787- 1798.
doi: 10.1109/JSEN.2020.3016673 |
8 |
ZHOU Q, ZHANG L, LI M, et al Floating-platform high-frequency hybrid sky-surface wave radar: simulations and experiments. IEEE Trans. on Antennas and Propagation, 2022, 70 (4): 3112- 3117.
doi: 10.1109/TAP.2021.3118775 |
9 | COUTTS S, CUOMO K, MCHARG J, et al. Distributed coherent aperture measurements for next generation BMD radar. Proc. of the IEEE 4th Workshop on Sensor Array and Multichannel Processing, 2006: 390–393. |
10 |
SUN P L, TANG J, HE Q, et al Cramer-Rao bound of parameters estimation and coherence performance for next generation radar. IET Radar, Sonar and Navigation, 2013, 7 (5): 553- 567.
doi: 10.1049/iet-rsn.2012.0139 |
11 | LU Y B, ZHANG L Q, ZHOU Y Q, et al Study on distributed aperture coherence-synthetic radar technology. Systems Engineering and Electronics, 2013, 35 (8): 1657- 1662. |
12 |
ZENG T, YIN P L, YANG X P, et al Time and phase synchronization for distributed aperture coherence radar. Journal of Radars, 2013, 2 (1): 105- 110.
doi: 10.3724/SP.J.1300.2013.20104 |
13 | ZENG T, YIN P L, LIU Q H. Wideband distributed coherent aperture radar based on stepped frequency signal: theory and experimental results. IET Radar, Sonar and Navigation, 2016, 10(4): 672–688. |
14 | LU Y B, GAO H W, ZHOU B L Distributed aperture coherence-synthetic radar technology. Journal of Radars, 2017, 6 (1): 55- 64. |
15 | YANG M L, WANG J, CHEN B X, et al. Experimental system and results for distributed VHF radar. Proc. of the CIE International Conference on Radar, 2016. DOI: 10.1109/RADAR.2016.8059160. |
16 |
XIAO X D, LI S Y, PENG S W, et al Microwave photonic wideband distributed coherent aperture radar with high robustness to time synchronization error. Journal of Lightwave Technology, 2021, 39 (2): 347- 356.
doi: 10.1109/JLT.2020.3030668 |
17 |
BELINDA L, CHAD W, BILL R, et al HF radar bistatic measurement of surface current velocities: drifter comparisons and radar consistency checks. Remote Sensing, 2009, 1 (4): 1190- 1211.
doi: 10.3390/rs1041190 |
18 |
LI M, ZHANG L, WU X B, et al Ocean surface current extraction scheme with high-frequency distributed hybrid sky-surface wave radar system. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (8): 4678- 4690.
doi: 10.1109/TGRS.2018.2834938 |
19 | HURLEY S M, TUMMALA M, WALKER T O, et al. Impact of synchronization on signal-to-noise ratio in a distributed radar system. Proc. of the IEEE/SMC International Conference on System of Systems Engineering, 2006: 294–298. |
20 | GAO Y J, LI G Y, LYU Z W, et al Improved adaptively robust estimation algorithm for GNSS spoofer considering continuous observation error. Journal of Systems Engineering and Electronics, 2022, 33 (5): 1237- 1248. |
21 |
SONG H B, WEN G J, LIANG YY, et al Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors. IEEE Trans. on Signal Processing, 2021, 69, 3088- 3103.
doi: 10.1109/TSP.2021.3081038 |
22 |
ZHANG Y Y, ZHANG H, OU N M, et al First demonstration of multipath effects on phase synchronization scheme for LT-1. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (4): 2590- 2604.
doi: 10.1109/TGRS.2019.2952471 |
23 | ZHANG Y Y, CHANG S, WANG R, et al An innovative push-to-talk (PTT) synchronization scheme for distributed SAR. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 1- 13. |
24 |
HUANG Y L, YANG J Y, WU J J, et al Precise time frequency synchronization technology for bistatic radar. Journal of Systems Engineering and Electronics, 2008, 19 (5): 929- 933.
doi: 10.1016/S1004-4132(08)60177-2 |
25 |
LIANG D, LIU K Y, ZHANG H, et al A high-accuracy synchronization phase-compensation method based on Kalman filter for bistatic synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (10): 1722- 1726.
doi: 10.1109/LGRS.2019.2952475 |
26 | WANG H B, YI H, ZHANG S K, et al. The study of BeiDou timing receiver delay calibration. Proc. of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum, 2015: 541–544. |
27 |
XU J, YU J, PENG Y N, et al Radon-Fourier transform for radar target detection, I: generalized Doppler filter bank. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (2): 1186- 1202.
doi: 10.1109/TAES.2011.5751251 |
28 |
WANG W Q, DING C B, LIANG X D Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems. IET Radar, Sonar and Navigation, 2008, 2 (1): 1- 11.
doi: 10.1049/iet-rsn:20060097 |
29 | HU P H, LI J Y, BAO Q L, et al. Parameter extraction of direct wave for passive radar using suboptimal nearest-neighbor approach. Proc. of the IEEE 2nd Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2018: 440–443. |
30 |
HAYASHI N, SATO M F–k filter designs to suppress direct waves for bistatic ground penetrating radar. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (3): 1433- 1444.
doi: 10.1109/TGRS.2009.2032536 |
31 | YANG M L, CHEN B X, QIANG Y Study on time synchronization methods using direct-path wave of bistatic multi-carrier-frequency MIMO radar. Aero Weaponry, 2011, 5 (2): 7- 12. |
32 |
ZHOU Q, YUE X C, ZHANG L, et al Correction of ionospheric distortion on HF hybrid sky-surface wave radar calibrated by direct wave. Radio Science, 2019, 54 (5): 380- 396.
doi: 10.1029/2018RS006645 |
33 | LU J X, LIU F F, SUN J Y, et al. Distributed radar robust location error calibration based on interplatform ranging information. Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. DOI: 10.1109/ICSIDP47821.2019.9173472. |
34 |
XIAO Y, XU Y, SUN H J, et al A precise real-time delay calibration method for navigation satellite transceiver. IEEE Trans. on Instrumentation and Measurement, 2016, 65 (11): 2578- 2586.
doi: 10.1109/TIM.2016.2584378 |
35 |
LIU X Y, WANG T, CHEN J M, et al Efficient configuration calibration in airborne distributed radar systems. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (3): 1799- 1817.
doi: 10.1109/TAES.2021.3139431 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||