Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (1): 172-180.doi: 10.12305/j.issn.1001-506X.2022.01.22
• Systems Engineering • Previous Articles Next Articles
Chong JIN1,*, Juan SUN1, Yongjia WANG1, Pushen CAI1,2, Xin RONG1
Received:
2020-12-02
Online:
2022-01-01
Published:
2022-01-19
Contact:
Chong JIN
CLC Number:
Chong JIN, Juan SUN, Yongjia WANG, Pushen CAI, Xin RONG. Threat comprehensive assessment for air defense targets based on intuitionistic fuzzy TOPSIS and variable weight VIKOR[J]. Systems Engineering and Electronics, 2022, 44(1): 172-180.
Table 1
Original data information of attacking target"
目标 | 目标类型威胁 | 火力打击能力 | 机动能力 | 电子对抗能力 | 进入角/(°) | 航路捷径/km | 飞临时间/s | 飞行速度/Ma | 高度/m |
M1 | 大(十分确定) | 极强(比较确定) | 很强(比较确定) | 很强(比较确定) | 123 | 12 | 300 | 2.2 | 15 000 |
M2 | 较大(比较确定) | 较强(一般) | 中等(比较确定) | 中等(比较确定) | 163 | 5 | 355 | 1.5 | 6 500 |
M3 | 很大(比较确定) | 很强(十分确定) | 强(一般) | 强(一般) | 145 | 4 | 380 | 1 | 10 000 |
M4 | 较大(比较确定) | 很强(不确定) | 极强(一般) | 较强(比较确定) | 115 | 2 | 430 | 0.4 | 5 500 |
M5 | 极大(十分确定) | 强(比较确定) | 稍弱(一般) | 较强(十分确定) | 150 | 5 | 150 | 3 | 3 500 |
M6 | 稍小(一般) | 很弱(比较确定) | 中等(十分确定) | 强(比较确定) | 148 | 6 | 390 | 0.8 | 8 000 |
Table 2
Threat assessment parameters of target static attribute indexes"
目标 | F1 | F2 | F3 | F4 |
M1 | 〈0.788 7, 0.107 2〉 | 〈1.0, 0〉 | 〈0.843 5, 0.084 1〉 | 〈0.843 5, 0.084 1〉 |
M2 | 〈0.643 2, 0.191 7〉 | 〈0.575 7, 0.244 9〉 | 〈0.40, 0.40〉 | 〈0.40, 0.40〉 |
M3 | 〈0.843 5, 0.084 1〉 | 〈0.890 6, 0.055 5〉 | 〈0.653 6, 0.20〉 | 〈0.653 6, 0.20〉 |
M4 | 〈0.643 2, 0.191 7〉 | 〈0.498 4, 0.324 9〉 | 〈1.0, 0〉 | 〈0.643 2, 0.191 7〉 |
M5 | 〈1.0, 0〉 | 〈0.736 8, 0.141 4〉 | 〈0.40, 0.424 3〉 | 〈0.689 4, 0.157 5〉 |
M6 | 〈0.40, 0.424 3〉 | 〈0.186 8, 0.704 0〉 | 〈0.40, 0.40〉 | 〈0.736 8, 0.141 4〉 |
1 | KONG D P , CHANG T Q , WANG Q D , et al. A threat assessment method of group targets based on interval-valued intuitioni-stic fuzzy multi-attribute group decision-making[J]. Applied Soft Computing, 2018, 67 (6): 350- 369. |
2 | DENG Y . A threat assessment model under uncertain environment[J]. Mathematical Problems in Engineering, 2015, 878024. |
3 |
付涛, 王军. 防空系统中空中目标威胁评估方法研究[J]. 指挥控制与仿真, 2016, 38 (3): 63- 69.
doi: 10.3969/j.issn.1673-3819.2016.03.013 |
FU T , WANG J . Threat assessment of aerial targets in air-defense[J]. Command Control & Simulation, 2016, 38 (3): 63- 69.
doi: 10.3969/j.issn.1673-3819.2016.03.013 |
|
4 |
季傲, 姜礼平, 吴强. 航母编队协同防空作战目标威胁评估[J]. 兵工自动化, 2016, 35 (5): 56- 58.
doi: 10.7690/bgzdh.2016.05.015 |
JI A , JING L P , WU Q . Target threat assessment for aircraft carrier formation cooperative air defense[J]. Ordnance Industry Automation, 2016, 35 (5): 56- 58.
doi: 10.7690/bgzdh.2016.05.015 |
|
5 | 李卫忠, 李志鹏, 江洋, 等. 混沌海豚群优化灰色神经网络的空中目标威胁评估[J]. 控制与决策, 2018, 33 (11): 80- 86. |
LI W Z , LI Z P , JIANG Y , et al. Air-targets threat assessment using grey neural network optimized by chaotic dolphin swarm algorithm[J]. Control and Decision, 2018, 33 (11): 80- 86. | |
6 | 王晓玲, 戴林瀚, 吕鹏, 等. 基于DSR-可拓云的渗流安全综合评价研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52 (1): 52- 61. |
WANG X L , DAI L H , LYU P , et al. Study on comprehensive evaluation model of seepage safety based on DSR-extension cloud[J]. Journal of Tianjin University(Science and Technology), 2019, 52 (1): 52- 61. | |
7 | 高杨, 李东生, 王骁. 基于区间数排序的目标识别系统威胁评估方法[J]. 探测与控制学报, 2015, 37 (6): 82- 86. |
GAO Y , LI D S , WANG X . Target threat assessment method based on intervals order[J]. Journal of Detection & Control, 2015, 37 (6): 82- 86. | |
8 |
XU Y J , WANG Y C , MIU X D . Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets[J]. Journal of Systems Engineering and Electronics, 2012, 23 (6): 891- 897.
doi: 10.1109/JSEE.2012.00109 |
9 |
SU X Z , CHEN M Y , XIA G P . An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making[J]. Expert System with Applications, 2011, 38, 15286- 15295.
doi: 10.1016/j.eswa.2011.06.022 |
10 | 张延风, 刘建书, 张士峰. 基于层次分析法和熵值法的目标多属性威胁评估[J]. 弹箭与制导学报, 2019, 39 (2): 163- 165. |
ZHANG Y F , LIU J S , ZHANG S F . A multi-attribute threat assessment method based on analytical hierarchy process and entropy method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39 (2): 163- 165. | |
11 | CHICLANA F . Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy prefe-rence relations[J]. Fuzzy Sets & Systems, 2001, 122 (2): 277- 291. |
12 |
YIN G Y , ZHOU S L , ZHANG W G . A threat assessment algorithm based on AHP and principal components analysis[J]. Procedia Engineering, 2011, 15, 4590- 4596.
doi: 10.1016/j.proeng.2011.08.862 |
13 |
徐克虎, 张明双, 李灵之. 基于区间变权灰色关联法的集群目标威胁评估[J]. 电光与控制, 2019, 26 (12): 6- 11.
doi: 10.3969/j.issn.1671-637X.2019.12.002 |
XU K H , ZHANG M S , LI L Z . Cluster target threat assessment based on interval variable weight grey correlation method[J]. Electronics Optics & Control, 2019, 26 (12): 6- 11.
doi: 10.3969/j.issn.1671-637X.2019.12.002 |
|
14 | 温包谦, 王涛. 弹炮结合武器系统指挥控制模型研究[C]//2019中国系统仿真与虚拟现实技术高层论坛, 2019: 232-236. |
WEN B Q, WANG T. Research on command and control model of integrate missile and gun weapon system[C]//Proc. of the China System Simulation and Virtual Reality Technology High Level Forum, 2019: 232-236. | |
15 |
周弘波, 张金成. 基于组合权重的灰色目标威胁评估[J]. 火力与指挥控制, 2018, 43 (10): 143- 146.
doi: 10.3969/j.issn.1002-0640.2018.10.028 |
ZHOU H B , ZHANG J C . Evaluation of target threat based on combinational weigh and grey correlation[J]. Fire Control & Command Control, 2018, 43 (10): 143- 146.
doi: 10.3969/j.issn.1002-0640.2018.10.028 |
|
16 | FREDRIK J, GORAN F. A Bayesian network approach to threat evaluation with application to an air defense scenario[C]//Proc. of the 11th International Conference on Information Fusion, 2008. |
17 | WANG Y, SUN Y, LI J Y, et al. Air defense threat assessment based on dynamic Bayesian network[C]//Proc. of the IEEE International Conference on Systems and Informatics, 2012: 721-724. |
18 | WANG G J , DUAN Y . TOPSIS approach for multi-attribute decision making problems based on n-intuitionistic polygonal fuzzy sets description[J]. Computers & Industrial Engineering, 2018, 124, 573- 581. |
19 |
SONG W , MIN G X , WU Z , et al. Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS[J]. International Journal of Computer Integrated Manufacturing, 2013, 26 (12): 1172- 1186.
doi: 10.1080/0951192X.2013.785027 |
20 | 奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46 (2): 388- 397. |
XI Z F , XU A , KOU Y X , et al. Air combat threat assessment based on improved GRA-TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (2): 388- 397. | |
21 | 张堃, 刘培培, 张建东, 等. 基于DVIKOR的空战多目标威胁评估[J]. 航空兵器, 2018, (2): 3- 8. |
ZHANG K , LIU P P , ZHANG J D , et al. Multi-target threat assessment in air combat based on DVIKOR[J]. Aero Weaponry, 2018, (2): 3- 8. | |
22 |
张明双, 徐克虎, 李灵之. 基于直觉模糊集和VIKOR法的多目标威胁评估[J]. 兵器装备工程学报, 2019, 40 (6): 62- 67.
doi: 10.11809/bqzbgcxb2019.06.014 |
ZHANG M S , XU K H , LI L Z . Multi-target threat assessment based on intuitionistic fuzzy set and VIKOR[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (6): 62- 67.
doi: 10.11809/bqzbgcxb2019.06.014 |
|
23 | CHEN D F , FENG Y , LIU Y X . Threat assessment for air defense operations based on intuitionistic fuzzy logic[J]. Procedia Engineering, 2012, 29 (4): 3302- 3306. |
24 | 孔德鹏, 常天庆, 郝娜, 等. 地面作战目标威胁评估多属性指标处理方法[J]. 自动化学报, 2021, 47 (1): 161- 172. |
KONG D P , CHANG T Q , HAO N , et al. Multi-attribute index processing method of target threat assessment in ground combat[J]. Acta Automatica Sinica, 2021, 47 (1): 161- 172. | |
25 |
徐好, 吴琳拥, 毛谨. 低空防御中目标威胁评估和火力分配技术[J]. 指挥控制与仿真, 2019, 41 (5): 39- 42.
doi: 10.3969/j.issn.1673-3819.2019.05.009 |
XU H , WU L Y , MAO J . Target threat assessment and fire allocation technology in low-altitude air[J]. Command Control & Simulation, 2019, 41 (5): 39- 42.
doi: 10.3969/j.issn.1673-3819.2019.05.009 |
|
26 | ASIM T , SEROL B . Weapon target assignment with combinatorial optimization techniques[J]. International Journal of Advanced Research in Artificial Intelligence, 2013, 2 (7): 39- 50. |
27 | 张堃, 王雪, 张才坤, 等. 基于IFE动态直觉模糊法的空战目标威胁评估[J]. 系统工程与电子技术, 2014, 36 (4): 697- 701. |
ZHANG K , WANG X , ZHANG C K , et al. Evaluating and sequencing of air target threat based on IFE and dynamic intui-tionistic fuzzy sets[J]. Systems Engineering and Electronics, 2014, 36 (4): 697- 701. | |
28 | CHEN S M , CHENG S H , LAN T C . Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values[J]. Information Sciences, 2016, 367 (11): 279- 295. |
29 |
杜鹏枭, 卢盈齐. 基于惩罚与激励变权和TOPSIS的空中目标威胁评估[J]. 军械工程学院学报, 2017, 29 (3): 59- 63.
doi: 10.3969/j.issn.1008-2956.2017.03.011 |
DU P X , LU Y Q . Air target threat evaluation based on punish- ment and encouragement variable weights and TOPSIS[J]. Journal of Ordnance Engineering College, 2017, 29 (3): 59- 63.
doi: 10.3969/j.issn.1008-2956.2017.03.011 |
|
30 |
巴宏欣, 王俊, 杨颜靖. 基于变权灰色关联法的高超声速目标威胁评估[J]. 火力与指挥控制, 2016, 41 (11): 21- 25.
doi: 10.3969/j.issn.1002-0640.2016.11.005 |
BA H X , WANG J , YANG Y J . Hypersonic target threat assessment based on method of variable weight grey incidence[J]. Fire Control & Command Control, 2016, 41 (11): 21- 25.
doi: 10.3969/j.issn.1002-0640.2016.11.005 |
|
31 | LI D Q , HAO F L . Weights transferring effect of state variable weight vector[J]. System Engineering-Theory & Practice, 2009, 29 (6): 127- 131. |
32 |
YAO R J , MA G W . Tendering evaluation method of hydraulic projects based on variable weight[J]. Procedia Engineering, 2012, 31, 868- 873.
doi: 10.1016/j.proeng.2012.01.1114 |
33 | 杨罗章, 胡生亮, 冯士民. 基于Entropy-TOPSIS方法的目标威胁动态评估与仿真[J]. 兵工自动化, 2020, 39 (3): 53- 56. |
YANG L Z , HU S L , FENG S M . Dynamic evaluation and simulation of targets threat based on entropy and TOPSIS method[J]. Ordnance Industry Automation, 2020, 39 (3): 53- 56. | |
34 | MARDANI A , ZAVADSKAS E K , GOVINDAN K , et al. VIKOR technique: a systematic review of the state of the art literature on methodologies and applications[J]. Sustainability, 2016, |
35 | SINGH S , OLUGU E U , MUSA S N , et al. Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment[J]. International Journal of Advanced Manufacturing Technology, 2016, 84 (4): 547- 563. |
[1] | Shouzhen ZENG, Yingjie HU. Group decision making method for distributed linguistic trust network based on highly incomplete information [J]. Systems Engineering and Electronics, 2022, 44(6): 1907-1919. |
[2] | Xudong SHI, Boyuan CHENG, Kun HUANG, Zhangang YANG. Risk assessment of aircraft IDG based on fuzzy TOPSIS-FMEA [J]. Systems Engineering and Electronics, 2022, 44(6): 2060-2064. |
[3] | Xinyu XU, Lunjun WAN, Ping CHEN, Jiangbin DAI, Zhizhou GAO. Modeling of alert patrol airspace planning in defensive counterair interception operation [J]. Systems Engineering and Electronics, 2022, 44(5): 1589-1599. |
[4] | Yingqi LU, Chengli FAN, Qiang FU, Xiaowen ZHU, Wei LI. Missile defense target threat assessment based on improved similarity measure and information entropy of IFRS [J]. Systems Engineering and Electronics, 2022, 44(4): 1230-1238. |
[5] | Bowen YU, Lin YU, Ming LYU, Jie ZHANG. Target threat assessment model based on M-ANFIS-PNN [J]. Systems Engineering and Electronics, 2022, 44(10): 3155-3163. |
[6] | Yunke SUN, Zhigeng FANG, Ding CHEN. Multi-time threat assessment based on dynamic grey principal component analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 740-746. |
[7] | Xiaofang ZHONG, Hongjuan LAN, Wenqi JIANG. Consensus driven information fusion model of interval-valued intuitionistic fuzzy multi-criteria group decision making [J]. Systems Engineering and Electronics, 2020, 42(7): 1558-1566. |
[8] | Yan LI, Yunxiang CHEN, Chengkun LUO, Zhongyi CAI. Multi-attribute decision making method based on probabilistic hesitant-intuitionistic fuzzy entropy and evidential reasoning [J]. Systems Engineering and Electronics, 2020, 42(5): 1116-1123. |
[9] | Xiwen TAO, Wenqi JIANG. Three-stage consensus improvement model under interval-valued intuitionistic multi-criteria group decision-making environment based on adjustment cost [J]. Systems Engineering and Electronics, 2020, 42(11): 2570-2580. |
[10] | Guanglei MENG, Mingzhe ZHOU, Haiyin PIAO, Huimin ZHANG. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition [J]. Systems Engineering and Electronics, 2020, 42(10): 2285-2293. |
[11] | SUN Haiwen, XIE Xiaofang, SUN Tao, ZHANG Longjie. Threat assessment method of warships formation air defense based on DBN under the condition of small sample data missing [J]. Systems Engineering and Electronics, 2019, 41(6): 1300-1308. |
[12] |
GAO Yang, LI Dongsheng.
Swarm situation perception consensus evaluation via intervalnumber Heronian operators with variable weights
[J]. Systems Engineering and Electronics, 2019, 41(1): 89-95.
|
[13] | SUN Qingpeng, LI Zhanwu, CHANG Yizhe. Multi-types airplane threat assessment based on combat power field [J]. Systems Engineering and Electronics, 2018, 40(9): 1993-1999. |
[14] | XU Ximeng, YANG Rennong, FU Ying, ZHAO Yu. Target threat assessment in air combat based on ELM_AdaBoost strong predictor [J]. Systems Engineering and Electronics, 2018, 40(8): 1760-1768. |
[15] | JIANG Wenqi, QI Chenchen, WANG Chenchen. Redefinition and model design of intuitionistic fuzzy sets similarity measure properties of fusion score function [J]. Systems Engineering and Electronics, 2018, 40(7): 1521-1529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||